Yijun Liu, Zhengning Wang, Ruixu Geng, Hao Zeng, Yi Zeng
{"title":"分数阶微分掩模导引下保持结构的极弱光图像增强","authors":"Yijun Liu, Zhengning Wang, Ruixu Geng, Hao Zeng, Yi Zeng","doi":"10.1145/3444685.3446319","DOIUrl":null,"url":null,"abstract":"Low visibility and high-level noise are two challenges for low-light image enhancement. In this paper, by introducing fractional order differential, we propose an end-to-end conditional generative adversarial network(GAN) to solve those two problems. For the problem of low visibility, we set up a global discriminator to improve the overall reconstruction quality and restore brightness information. For the high-level noise problem, we introduce fractional order differentiation into both the generator and the discriminator. Compared with conventional end-to-end methods, fractional order can better distinguish noise and high-frequency details, thereby achieving superior noise reduction effects while maintaining details. Finally, experimental results show that the proposed model obtains superior visual effects in low-light image enhancement. By introducing fractional order differential, we anticipate that our framework will enable high quality and detailed image recovery not only in the field of low-light enhancement but also in other fields that require details.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure-preserving extremely low light image enhancement with fractional order differential mask guidance\",\"authors\":\"Yijun Liu, Zhengning Wang, Ruixu Geng, Hao Zeng, Yi Zeng\",\"doi\":\"10.1145/3444685.3446319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low visibility and high-level noise are two challenges for low-light image enhancement. In this paper, by introducing fractional order differential, we propose an end-to-end conditional generative adversarial network(GAN) to solve those two problems. For the problem of low visibility, we set up a global discriminator to improve the overall reconstruction quality and restore brightness information. For the high-level noise problem, we introduce fractional order differentiation into both the generator and the discriminator. Compared with conventional end-to-end methods, fractional order can better distinguish noise and high-frequency details, thereby achieving superior noise reduction effects while maintaining details. Finally, experimental results show that the proposed model obtains superior visual effects in low-light image enhancement. By introducing fractional order differential, we anticipate that our framework will enable high quality and detailed image recovery not only in the field of low-light enhancement but also in other fields that require details.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure-preserving extremely low light image enhancement with fractional order differential mask guidance
Low visibility and high-level noise are two challenges for low-light image enhancement. In this paper, by introducing fractional order differential, we propose an end-to-end conditional generative adversarial network(GAN) to solve those two problems. For the problem of low visibility, we set up a global discriminator to improve the overall reconstruction quality and restore brightness information. For the high-level noise problem, we introduce fractional order differentiation into both the generator and the discriminator. Compared with conventional end-to-end methods, fractional order can better distinguish noise and high-frequency details, thereby achieving superior noise reduction effects while maintaining details. Finally, experimental results show that the proposed model obtains superior visual effects in low-light image enhancement. By introducing fractional order differential, we anticipate that our framework will enable high quality and detailed image recovery not only in the field of low-light enhancement but also in other fields that require details.