异构CPU-GPU处理器中的GPU计算管道效率低下和优化机会

Joel Hestness, S. Keckler, D. Wood
{"title":"异构CPU-GPU处理器中的GPU计算管道效率低下和优化机会","authors":"Joel Hestness, S. Keckler, D. Wood","doi":"10.1109/IISWC.2015.15","DOIUrl":null,"url":null,"abstract":"Emerging heterogeneous CPU-GPU processors have introduced unified memory spaces and cache coherence. CPU and GPU cores will be able to concurrently access the same memories, eliminating memory copy overheads and potentially changing the application-level optimization targets. To date, little is known about how developers may organize new applications to leverage the available, finer-grained communication in these processors. However, understanding potential application optimizations and adaptations is critical for directing heterogeneous processor programming model and architectural development. This paper quantifies opportunities for applications and architectures to evolve to leverage the new capabilities of heterogeneous processors. To identify these opportunities, we ported and simulated a broad set of benchmarks originally developed for discrete GPUs to remove memory copies, and applied analytical models to quantify their application-level pipeline inefficiencies. For existing benchmarks, GPU bulk-synchronous software pipelines result in considerable core and cache utilization inefficiency. For heterogeneous processors, the results indicate increased opportunity for techniques that provide flexible compute and data granularities, and support for efficient producer-consumer data handling and synchronization within caches.","PeriodicalId":142698,"journal":{"name":"2015 IEEE International Symposium on Workload Characterization","volume":"447 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"GPU Computing Pipeline Inefficiencies and Optimization Opportunities in Heterogeneous CPU-GPU Processors\",\"authors\":\"Joel Hestness, S. Keckler, D. Wood\",\"doi\":\"10.1109/IISWC.2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging heterogeneous CPU-GPU processors have introduced unified memory spaces and cache coherence. CPU and GPU cores will be able to concurrently access the same memories, eliminating memory copy overheads and potentially changing the application-level optimization targets. To date, little is known about how developers may organize new applications to leverage the available, finer-grained communication in these processors. However, understanding potential application optimizations and adaptations is critical for directing heterogeneous processor programming model and architectural development. This paper quantifies opportunities for applications and architectures to evolve to leverage the new capabilities of heterogeneous processors. To identify these opportunities, we ported and simulated a broad set of benchmarks originally developed for discrete GPUs to remove memory copies, and applied analytical models to quantify their application-level pipeline inefficiencies. For existing benchmarks, GPU bulk-synchronous software pipelines result in considerable core and cache utilization inefficiency. For heterogeneous processors, the results indicate increased opportunity for techniques that provide flexible compute and data granularities, and support for efficient producer-consumer data handling and synchronization within caches.\",\"PeriodicalId\":142698,\"journal\":{\"name\":\"2015 IEEE International Symposium on Workload Characterization\",\"volume\":\"447 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Workload Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

新兴的异构CPU-GPU处理器引入了统一的内存空间和缓存一致性。CPU和GPU内核将能够并发访问相同的内存,消除内存复制开销,并可能改变应用程序级优化目标。迄今为止,对于开发人员如何组织新应用程序以利用这些处理器中可用的细粒度通信,所知甚少。然而,理解潜在的应用程序优化和适应对于指导异构处理器编程模型和体系结构开发至关重要。本文量化了应用程序和体系结构发展的机会,以利用异构处理器的新功能。为了识别这些机会,我们移植并模拟了最初为离散gpu开发的一组广泛的基准测试,以消除内存副本,并应用分析模型来量化它们的应用程序级流水线效率低下。对于现有的基准测试,GPU批量同步软件管道导致相当大的核心和缓存利用效率低下。对于异构处理器,结果表明提供灵活的计算和数据粒度以及支持高效的生产者-消费者数据处理和缓存内同步的技术的机会增加了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU Computing Pipeline Inefficiencies and Optimization Opportunities in Heterogeneous CPU-GPU Processors
Emerging heterogeneous CPU-GPU processors have introduced unified memory spaces and cache coherence. CPU and GPU cores will be able to concurrently access the same memories, eliminating memory copy overheads and potentially changing the application-level optimization targets. To date, little is known about how developers may organize new applications to leverage the available, finer-grained communication in these processors. However, understanding potential application optimizations and adaptations is critical for directing heterogeneous processor programming model and architectural development. This paper quantifies opportunities for applications and architectures to evolve to leverage the new capabilities of heterogeneous processors. To identify these opportunities, we ported and simulated a broad set of benchmarks originally developed for discrete GPUs to remove memory copies, and applied analytical models to quantify their application-level pipeline inefficiencies. For existing benchmarks, GPU bulk-synchronous software pipelines result in considerable core and cache utilization inefficiency. For heterogeneous processors, the results indicate increased opportunity for techniques that provide flexible compute and data granularities, and support for efficient producer-consumer data handling and synchronization within caches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Computational GPU Design with GT-Pin On Power-Performance Characterization of Concurrent Throughput Kernels CRONO: A Benchmark Suite for Multithreaded Graph Algorithms Executing on Futuristic Multicores Exploring Parallel Programming Models for Heterogeneous Computing Systems Revealing Critical Loads and Hidden Data Locality in GPGPU Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1