支持向量机在系统级多故障诊断中的性能评价

R. K. Mishra, Anurag Choudhary, A. Mohanty, S. Fatima
{"title":"支持向量机在系统级多故障诊断中的性能评价","authors":"R. K. Mishra, Anurag Choudhary, A. Mohanty, S. Fatima","doi":"10.1109/PHM2022-London52454.2022.00028","DOIUrl":null,"url":null,"abstract":"Rotating elements are the essential part of various industries. Progressive degradation of rotating parts leads to system failure and economic losses. Several studies have been carried out to diagnose incipient faults in rotating components using the knowledge-based self-diagnosis Machine Learning (ML) models. But in real scenarios expecting the occurrence of one fault at a time is very unlikely. Multiple components and subcomponent faults take place simultaneously in a system. In most industries, machine parts are replaced directly to avoid downtime. Hence detection of multi-faults at a system level is very much important. In this paper, two major rotating components (motor and bearing) were considered, and all possible multi-fault conditions were simulated under different speed and load conditions. The raw vibration signals were acquired from three different locations and used directly for the training of the Support Vector Machine (SVM) model. The highest classification accuracy of 100% was achieved for the multi-fault diagnosis. Performance evaluation of the SVM model was done using eleven different performance matrixes. The model showed a greater potential to identify different multi-faults using the raw signal without using any further data processing or feature engineering techniques.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance Evaluation of Support Vector Machine for System Level Multi-fault Diagnosis\",\"authors\":\"R. K. Mishra, Anurag Choudhary, A. Mohanty, S. Fatima\",\"doi\":\"10.1109/PHM2022-London52454.2022.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotating elements are the essential part of various industries. Progressive degradation of rotating parts leads to system failure and economic losses. Several studies have been carried out to diagnose incipient faults in rotating components using the knowledge-based self-diagnosis Machine Learning (ML) models. But in real scenarios expecting the occurrence of one fault at a time is very unlikely. Multiple components and subcomponent faults take place simultaneously in a system. In most industries, machine parts are replaced directly to avoid downtime. Hence detection of multi-faults at a system level is very much important. In this paper, two major rotating components (motor and bearing) were considered, and all possible multi-fault conditions were simulated under different speed and load conditions. The raw vibration signals were acquired from three different locations and used directly for the training of the Support Vector Machine (SVM) model. The highest classification accuracy of 100% was achieved for the multi-fault diagnosis. Performance evaluation of the SVM model was done using eleven different performance matrixes. The model showed a greater potential to identify different multi-faults using the raw signal without using any further data processing or feature engineering techniques.\",\"PeriodicalId\":269605,\"journal\":{\"name\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM2022-London52454.2022.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

旋转元件是各种工业的重要组成部分。旋转部件的逐渐退化会导致系统故障和经济损失。利用基于知识的自诊断机器学习(ML)模型对旋转部件的早期故障进行了诊断。但在实际情况下,期望一次发生一个故障是非常不可能的。系统中的多个组件和子组件同时发生故障。在大多数工业中,直接更换机器零件以避免停机。因此,在系统层面对多故障进行检测是非常重要的。本文考虑两个主要的旋转部件(电机和轴承),在不同的转速和负载条件下,模拟了所有可能的多故障情况。从三个不同的位置获取原始振动信号,并直接用于支持向量机(SVM)模型的训练。多故障诊断的分类准确率最高,达到100%。采用11种不同的性能矩阵对SVM模型进行了性能评价。该模型显示出更大的潜力,可以在不使用任何进一步的数据处理或特征工程技术的情况下,使用原始信号识别不同的多故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of Support Vector Machine for System Level Multi-fault Diagnosis
Rotating elements are the essential part of various industries. Progressive degradation of rotating parts leads to system failure and economic losses. Several studies have been carried out to diagnose incipient faults in rotating components using the knowledge-based self-diagnosis Machine Learning (ML) models. But in real scenarios expecting the occurrence of one fault at a time is very unlikely. Multiple components and subcomponent faults take place simultaneously in a system. In most industries, machine parts are replaced directly to avoid downtime. Hence detection of multi-faults at a system level is very much important. In this paper, two major rotating components (motor and bearing) were considered, and all possible multi-fault conditions were simulated under different speed and load conditions. The raw vibration signals were acquired from three different locations and used directly for the training of the Support Vector Machine (SVM) model. The highest classification accuracy of 100% was achieved for the multi-fault diagnosis. Performance evaluation of the SVM model was done using eleven different performance matrixes. The model showed a greater potential to identify different multi-faults using the raw signal without using any further data processing or feature engineering techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defending Against Adversarial Attacks on Time- series with Selective Classification Fault diagnosis of fire control system based on genetic algorithm optimized BP neural network Monitoring and Mitigating Ionosphere threats in GNSS Space Environment Science A Relation Prediction Method for Industrial Knowledge Graph with Complex Relations Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and Informed by the Principle of Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1