使用基于语法的遗传编程进化马里奥AI控制器

J. M. Freitas, F. R. D. Souza, H. Bernardino
{"title":"使用基于语法的遗传编程进化马里奥AI控制器","authors":"J. M. Freitas, F. R. D. Souza, H. Bernardino","doi":"10.1109/CEC.2018.8477698","DOIUrl":null,"url":null,"abstract":"Video games mimic real-world situations and they can be used as a benchmark to evaluate computational methods in solving different types of problems. Also, machine learning methods are used nowadays to improve the quality of non-player characters in order (i) to create human like behaviors, and (ii) to increase the hardness of the games. Genetic Programming (GP) has presented good results when evolving programs in general. One of the main advantage of GP is the availability of the source-code of its solutions, helping researchers to understand the decision-making process. Also, a formal grammar can be used in order to facilitate the generation of programs in more complex languages (such as Java, C, and Python). Here, we propose the use of Grammar-based Genetic Programming (GGP) to evolve controllers for Mario AI, a popular platform to test video game controllers which simulates the Nintendo's Super Mario Bros. Also, as GP provides the source-code of the solutions, we present and analyze the best program obtained. Finally, GGP is compared to other techniques from the literature and the results show that GGP find good controllers, specially with respect to the scores obtained on higher difficulty levels.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evolving Controllers for Mario AI Using Grammar-based Genetic Programming\",\"authors\":\"J. M. Freitas, F. R. D. Souza, H. Bernardino\",\"doi\":\"10.1109/CEC.2018.8477698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video games mimic real-world situations and they can be used as a benchmark to evaluate computational methods in solving different types of problems. Also, machine learning methods are used nowadays to improve the quality of non-player characters in order (i) to create human like behaviors, and (ii) to increase the hardness of the games. Genetic Programming (GP) has presented good results when evolving programs in general. One of the main advantage of GP is the availability of the source-code of its solutions, helping researchers to understand the decision-making process. Also, a formal grammar can be used in order to facilitate the generation of programs in more complex languages (such as Java, C, and Python). Here, we propose the use of Grammar-based Genetic Programming (GGP) to evolve controllers for Mario AI, a popular platform to test video game controllers which simulates the Nintendo's Super Mario Bros. Also, as GP provides the source-code of the solutions, we present and analyze the best program obtained. Finally, GGP is compared to other techniques from the literature and the results show that GGP find good controllers, specially with respect to the scores obtained on higher difficulty levels.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

电子游戏模拟现实世界的情况,它们可以作为评估解决不同类型问题的计算方法的基准。此外,机器学习方法现在被用于提高非玩家角色的质量,目的是(1)创造类似人类的行为,(2)增加游戏的难度。遗传规划(GP)在一般的程序进化中表现出良好的效果。GP的主要优点之一是其解决方案的源代码的可用性,帮助研究人员了解决策过程。此外,还可以使用形式化语法来促进用更复杂的语言(如Java、C和Python)生成程序。在这里,我们提出使用基于语法的遗传编程(GGP)来进化马里奥AI的控制器,马里奥AI是一个流行的测试视频游戏控制器的平台,模拟任天堂的超级马里奥兄弟。此外,由于GP提供了解决方案的源代码,我们提出并分析了获得的最佳程序。最后,将GGP与文献中的其他技术进行比较,结果表明GGP找到了很好的控制器,特别是在较高难度水平上获得的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving Controllers for Mario AI Using Grammar-based Genetic Programming
Video games mimic real-world situations and they can be used as a benchmark to evaluate computational methods in solving different types of problems. Also, machine learning methods are used nowadays to improve the quality of non-player characters in order (i) to create human like behaviors, and (ii) to increase the hardness of the games. Genetic Programming (GP) has presented good results when evolving programs in general. One of the main advantage of GP is the availability of the source-code of its solutions, helping researchers to understand the decision-making process. Also, a formal grammar can be used in order to facilitate the generation of programs in more complex languages (such as Java, C, and Python). Here, we propose the use of Grammar-based Genetic Programming (GGP) to evolve controllers for Mario AI, a popular platform to test video game controllers which simulates the Nintendo's Super Mario Bros. Also, as GP provides the source-code of the solutions, we present and analyze the best program obtained. Finally, GGP is compared to other techniques from the literature and the results show that GGP find good controllers, specially with respect to the scores obtained on higher difficulty levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Evolution of AutoEncoders for Compressed Representations Landscape-Based Differential Evolution for Constrained Optimization Problems A Novel Approach for Optimizing Ensemble Components in Rainfall Prediction A Many-Objective Evolutionary Algorithm with Fast Clustering and Reference Point Redistribution Manyobjective Optimization to Design Physical Topology of Optical Networks with Undefined Node Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1