基于奇异值分解的光照不变人脸识别预处理

K. P. Chandar, M. Chandra, M. R. Kumar, B. Swarnalatha
{"title":"基于奇异值分解的光照不变人脸识别预处理","authors":"K. P. Chandar, M. Chandra, M. R. Kumar, B. Swarnalatha","doi":"10.1109/RAICS.2011.6069271","DOIUrl":null,"url":null,"abstract":"Uncontrolled lighting Conditions poses obstacle to face recognition. To deal with this problem, this paper proposes a preprocessing scheme using Singular Value Decomposition and Histogram Equalization to enhance and facilitate illumination invariant face recognition. The proposed method first generates synthetic image using Histogram equalization. Original and synthetic images are singular value decomposed; from the estimates of singular values enhanced image is reconstructed. Enhanced image is discrete wavelet decomposed (Haar & Db4) in to different frequency sub bands (LL, LH, HL, HH). The LL sub band is the best approximation of original image with lower-dimensional space and is used as biometric template. Pose Invariant Feature vectors are extracted from this template using Kernel Principal Component Analysis (KPCA). To show the performance, the proposed method is tested on YaleB, ORL benchmarking Databases. The results obtained show the impact of the method and is compared with PCA, KPCA without any preprocessing.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"40 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Preprocessing using SVD towards illumination invariant face recognition\",\"authors\":\"K. P. Chandar, M. Chandra, M. R. Kumar, B. Swarnalatha\",\"doi\":\"10.1109/RAICS.2011.6069271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncontrolled lighting Conditions poses obstacle to face recognition. To deal with this problem, this paper proposes a preprocessing scheme using Singular Value Decomposition and Histogram Equalization to enhance and facilitate illumination invariant face recognition. The proposed method first generates synthetic image using Histogram equalization. Original and synthetic images are singular value decomposed; from the estimates of singular values enhanced image is reconstructed. Enhanced image is discrete wavelet decomposed (Haar & Db4) in to different frequency sub bands (LL, LH, HL, HH). The LL sub band is the best approximation of original image with lower-dimensional space and is used as biometric template. Pose Invariant Feature vectors are extracted from this template using Kernel Principal Component Analysis (KPCA). To show the performance, the proposed method is tested on YaleB, ORL benchmarking Databases. The results obtained show the impact of the method and is compared with PCA, KPCA without any preprocessing.\",\"PeriodicalId\":394515,\"journal\":{\"name\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"volume\":\"40 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2011.6069271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

不受控制的光照条件对人脸识别造成了障碍。针对这一问题,本文提出了一种基于奇异值分解和直方图均衡化的预处理方案,以增强和简化光照不变人脸识别。该方法首先利用直方图均衡化生成合成图像。原始图像和合成图像进行奇异值分解;从奇异值估计出发重建增强图像。增强图像是离散小波分解(Haar & Db4)到不同的频率子带(LL, LH, HL, HH)。l子带在低维空间中最接近原始图像,可作为生物识别模板。利用核主成分分析(KPCA)从该模板中提取姿态不变特征向量。为了证明该方法的性能,在YaleB、ORL基准数据库上进行了测试。结果表明了该方法的有效性,并与未经预处理的PCA、KPCA进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preprocessing using SVD towards illumination invariant face recognition
Uncontrolled lighting Conditions poses obstacle to face recognition. To deal with this problem, this paper proposes a preprocessing scheme using Singular Value Decomposition and Histogram Equalization to enhance and facilitate illumination invariant face recognition. The proposed method first generates synthetic image using Histogram equalization. Original and synthetic images are singular value decomposed; from the estimates of singular values enhanced image is reconstructed. Enhanced image is discrete wavelet decomposed (Haar & Db4) in to different frequency sub bands (LL, LH, HL, HH). The LL sub band is the best approximation of original image with lower-dimensional space and is used as biometric template. Pose Invariant Feature vectors are extracted from this template using Kernel Principal Component Analysis (KPCA). To show the performance, the proposed method is tested on YaleB, ORL benchmarking Databases. The results obtained show the impact of the method and is compared with PCA, KPCA without any preprocessing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fast approximate kernel k-means clustering method for large data sets Hue-preserving color image enhancement using particle swarm optimization Novel stable sram for ultra low power deep submicron cache memories A level shifter for deep-submicron node using multi-threshold technique Efficient computation of codon bias spectra and their implications in genome sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1