图像语言终端符号的特征分析

Przemyslaw Glomb
{"title":"图像语言终端符号的特征分析","authors":"Przemyslaw Glomb","doi":"10.1109/IST.2007.379599","DOIUrl":null,"url":null,"abstract":"This article presents an approach to generate the image description in the form of sequence of symbols, suitable for further processing with parsing and grammar inference tools. The algorithm assumes presence of a training set of example images. From this set a number of image patches is selected. Using sparse kernel feature analysis, the similarity functions for each symbol are prepared. These functions are used to get terminal symbol locations within analyzed image. A list of symbol locations is then reduced into a tree. Application experiments performed with a database of car images show the potential of the method to represent the structure of object images.","PeriodicalId":329519,"journal":{"name":"2007 IEEE International Workshop on Imaging Systems and Techniques","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image Language Terminal Symbols from Feature Analysis\",\"authors\":\"Przemyslaw Glomb\",\"doi\":\"10.1109/IST.2007.379599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an approach to generate the image description in the form of sequence of symbols, suitable for further processing with parsing and grammar inference tools. The algorithm assumes presence of a training set of example images. From this set a number of image patches is selected. Using sparse kernel feature analysis, the similarity functions for each symbol are prepared. These functions are used to get terminal symbol locations within analyzed image. A list of symbol locations is then reduced into a tree. Application experiments performed with a database of car images show the potential of the method to represent the structure of object images.\",\"PeriodicalId\":329519,\"journal\":{\"name\":\"2007 IEEE International Workshop on Imaging Systems and Techniques\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Workshop on Imaging Systems and Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2007.379599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Workshop on Imaging Systems and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2007.379599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种以符号序列的形式生成图像描述的方法,该方法适合使用解析和语法推理工具进行进一步处理。该算法假设存在一个示例图像的训练集。从这个集合中选择一些图像补丁。利用稀疏核特征分析,编制了各符号的相似度函数。这些函数用于得到被分析图像中的终端符号位置。然后将符号位置列表简化为树。在汽车图像数据库中进行的应用实验显示了该方法在表示物体图像结构方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Language Terminal Symbols from Feature Analysis
This article presents an approach to generate the image description in the form of sequence of symbols, suitable for further processing with parsing and grammar inference tools. The algorithm assumes presence of a training set of example images. From this set a number of image patches is selected. Using sparse kernel feature analysis, the similarity functions for each symbol are prepared. These functions are used to get terminal symbol locations within analyzed image. A list of symbol locations is then reduced into a tree. Application experiments performed with a database of car images show the potential of the method to represent the structure of object images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of micro calcifications of mammographic images Contribution of Active Contour Approach to Image Understanding Electromagnetic Imaging for Non-Intrusive Evaluation in Civil Engineering Measurement of Wheelchair Position for Analyzing Transfer Motion for SCI Patient On the Robustness of Multi-Pulse Techniques Against Undesired Effects in Contrast Enhanced Ultrasound Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1