使用混合智能方法的短期日平均和峰值负荷预测

P. Dash, H. P. Satpathy, S. Rahman
{"title":"使用混合智能方法的短期日平均和峰值负荷预测","authors":"P. Dash, H. P. Satpathy, S. Rahman","doi":"10.1109/EMPD.1995.500789","DOIUrl":null,"url":null,"abstract":"A fuzzy neural network based on the multilayer perceptron and capable of fuzzy classification of patterns is presented in this paper. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used for training the network. In the supervised learning phase linear Kalman filter equations are used for tuning the weights and membership functions. Extensive tests have been performed on a two-year-utility data for generation of peak and average load profiles for 24- and 168-hours ahead time frames and results for winter and summer months are given to confirm the effectiveness of the new approach.","PeriodicalId":447674,"journal":{"name":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Short term daily average and peak load predications using a hybrid intelligent approach\",\"authors\":\"P. Dash, H. P. Satpathy, S. Rahman\",\"doi\":\"10.1109/EMPD.1995.500789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy neural network based on the multilayer perceptron and capable of fuzzy classification of patterns is presented in this paper. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used for training the network. In the supervised learning phase linear Kalman filter equations are used for tuning the weights and membership functions. Extensive tests have been performed on a two-year-utility data for generation of peak and average load profiles for 24- and 168-hours ahead time frames and results for winter and summer months are given to confirm the effectiveness of the new approach.\",\"PeriodicalId\":447674,\"journal\":{\"name\":\"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMPD.1995.500789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1995.500789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于多层感知器的模糊神经网络,能够对模式进行模糊分类。采用一种由无监督学习阶段和有监督学习阶段组成的混合学习算法对网络进行训练。在监督学习阶段,使用线性卡尔曼滤波方程来调整权重和隶属函数。对两年的公用事业数据进行了广泛的测试,以生成提前24小时和168小时的峰值和平均负荷概况,并给出了冬季和夏季月份的结果,以确认新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short term daily average and peak load predications using a hybrid intelligent approach
A fuzzy neural network based on the multilayer perceptron and capable of fuzzy classification of patterns is presented in this paper. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used for training the network. In the supervised learning phase linear Kalman filter equations are used for tuning the weights and membership functions. Extensive tests have been performed on a two-year-utility data for generation of peak and average load profiles for 24- and 168-hours ahead time frames and results for winter and summer months are given to confirm the effectiveness of the new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer studies of high-voltage motor switching transients A study on the fault indentification of underground cable using neural networks The technical efficiency of developing country electricity systems A method for cost benefit analysis of distribution automation Statistical standards and pollution estimation of harmonics in a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1