基于深度神经网络的风力发电机性能退化估计

Manuel S. Mathew, S. Kandukuri, C. Omlin
{"title":"基于深度神经网络的风力发电机性能退化估计","authors":"Manuel S. Mathew, S. Kandukuri, C. Omlin","doi":"10.36001/phme.2022.v7i1.3328","DOIUrl":null,"url":null,"abstract":"In this paper, we estimate the age-related performance degradation of a wind turbine working under Norwegian environment, based on a deep neural network model. Ten years of high-resolution operational data from a 2 MW wind turbine were used for the analysis. Operational data of the turbine, between cut-in and rated wind velocities, were considered, which were pre-processed to eliminate outliers and noises. Based on the SHapley Additive exPlanations of a preliminary performance model, a benchmark performance model for the turbine was developed with deep neural networks. An efficiency index is proposed to gauge the agerelated performance degradation of the turbine, which compares measured performances of the turbine over the years with corresponding bench marked performance. On an average, the efficiency index of the turbine is found to decline by 0.64 percent annually, which is comparable with the degradation patterns reported under similar studies from the UK and the US.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Estimation of Wind Turbine Performance Degradation with Deep Neural Networks\",\"authors\":\"Manuel S. Mathew, S. Kandukuri, C. Omlin\",\"doi\":\"10.36001/phme.2022.v7i1.3328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we estimate the age-related performance degradation of a wind turbine working under Norwegian environment, based on a deep neural network model. Ten years of high-resolution operational data from a 2 MW wind turbine were used for the analysis. Operational data of the turbine, between cut-in and rated wind velocities, were considered, which were pre-processed to eliminate outliers and noises. Based on the SHapley Additive exPlanations of a preliminary performance model, a benchmark performance model for the turbine was developed with deep neural networks. An efficiency index is proposed to gauge the agerelated performance degradation of the turbine, which compares measured performances of the turbine over the years with corresponding bench marked performance. On an average, the efficiency index of the turbine is found to decline by 0.64 percent annually, which is comparable with the degradation patterns reported under similar studies from the UK and the US.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们基于深度神经网络模型估计挪威环境下工作的风力涡轮机与年龄相关的性能退化。该分析使用了一台2兆瓦风力涡轮机10年来的高分辨率运行数据。考虑入路风速和额定风速之间的风机运行数据,对数据进行预处理,去除异常值和噪声。在初步性能模型SHapley加性解释的基础上,利用深度神经网络建立了水轮机基准性能模型。提出了一种衡量水轮机相关性能退化的效率指标,将水轮机多年来的实测性能与相应的基准性能进行比较。平均而言,涡轮机的效率指数每年下降0.64%,这与英国和美国类似研究报告的退化模式相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Wind Turbine Performance Degradation with Deep Neural Networks
In this paper, we estimate the age-related performance degradation of a wind turbine working under Norwegian environment, based on a deep neural network model. Ten years of high-resolution operational data from a 2 MW wind turbine were used for the analysis. Operational data of the turbine, between cut-in and rated wind velocities, were considered, which were pre-processed to eliminate outliers and noises. Based on the SHapley Additive exPlanations of a preliminary performance model, a benchmark performance model for the turbine was developed with deep neural networks. An efficiency index is proposed to gauge the agerelated performance degradation of the turbine, which compares measured performances of the turbine over the years with corresponding bench marked performance. On an average, the efficiency index of the turbine is found to decline by 0.64 percent annually, which is comparable with the degradation patterns reported under similar studies from the UK and the US.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings Novel Methodology for Health Assessment in Printed Circuit Boards On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1