{"title":"并行与最优结构、控制与实现设计","authors":"F. Rahimi, J. Wikander","doi":"10.1109/ICMIMT49010.2020.9041181","DOIUrl":null,"url":null,"abstract":"Mechatronic system design includes a combination of different engineering disciplines. A common approach in design of mechatronic systems is based on a sequential method, where different disciplines are treated and designed separately. This paper extends earlier work on integrated physical and control design optimization with integrating an additional aspect of the corresponding embedded control system implementation. Our previous publications describe integrated design optimization through a few specific use cases but the impact of embedded control implementation on the structural design of the systems is neglected. In this paper, the approach is extended to cover discussions on control implementation and its effect on the physical dimensioning and vice versa. A multi-objective optimization approach is implemented and tested on a mechatronic system case study consisting of a DC-motor, a planetary gear, a flexible shaft, an embedded controller and a load. The couplings between the properties of different engineering domains are studied and highlighted. The presented approach which is aimed for early phases of design, considers the integration of three engineering disciplines in one design framework which so far has been missing.","PeriodicalId":377249,"journal":{"name":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concurrent and Optimal Structure, Control and Implementation Design\",\"authors\":\"F. Rahimi, J. Wikander\",\"doi\":\"10.1109/ICMIMT49010.2020.9041181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechatronic system design includes a combination of different engineering disciplines. A common approach in design of mechatronic systems is based on a sequential method, where different disciplines are treated and designed separately. This paper extends earlier work on integrated physical and control design optimization with integrating an additional aspect of the corresponding embedded control system implementation. Our previous publications describe integrated design optimization through a few specific use cases but the impact of embedded control implementation on the structural design of the systems is neglected. In this paper, the approach is extended to cover discussions on control implementation and its effect on the physical dimensioning and vice versa. A multi-objective optimization approach is implemented and tested on a mechatronic system case study consisting of a DC-motor, a planetary gear, a flexible shaft, an embedded controller and a load. The couplings between the properties of different engineering domains are studied and highlighted. The presented approach which is aimed for early phases of design, considers the integration of three engineering disciplines in one design framework which so far has been missing.\",\"PeriodicalId\":377249,\"journal\":{\"name\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIMT49010.2020.9041181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIMT49010.2020.9041181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concurrent and Optimal Structure, Control and Implementation Design
Mechatronic system design includes a combination of different engineering disciplines. A common approach in design of mechatronic systems is based on a sequential method, where different disciplines are treated and designed separately. This paper extends earlier work on integrated physical and control design optimization with integrating an additional aspect of the corresponding embedded control system implementation. Our previous publications describe integrated design optimization through a few specific use cases but the impact of embedded control implementation on the structural design of the systems is neglected. In this paper, the approach is extended to cover discussions on control implementation and its effect on the physical dimensioning and vice versa. A multi-objective optimization approach is implemented and tested on a mechatronic system case study consisting of a DC-motor, a planetary gear, a flexible shaft, an embedded controller and a load. The couplings between the properties of different engineering domains are studied and highlighted. The presented approach which is aimed for early phases of design, considers the integration of three engineering disciplines in one design framework which so far has been missing.