在代码级别自动识别性能变化

D. Reichelt, Stefan Kühne, W. Hasselbring
{"title":"在代码级别自动识别性能变化","authors":"D. Reichelt, Stefan Kühne, W. Hasselbring","doi":"10.1109/QRS57517.2022.00096","DOIUrl":null,"url":null,"abstract":"To develop software with optimal performance, even small performance changes need to be identified. Identifying performance changes is challenging since the performance of software is influenced by non-deterministic factors. Therefore, not every performance change is measurable with reasonable effort. In this work, we discuss which performance changes are measurable at code level with reasonable measurement effort and how to identify them. We present (1) an analysis of the boundaries of measuring performance changes, (2) an approach for determining a configuration for reproducible performance change identification, and (3) an evaluation comparing of how well our approach is able to identify performance changes in the application server Jetty compared with the usage of Jetty’s own performance regression benchmarks.Thereby, we find (1) that small performance differences are only measurable by fine-grained measurement workloads, (2) that performance changes caused by the change of one operation can be identified using a unit-test-sized workload definition and a suitable configuration, and (3) that using our approach identifies small performance regressions more efficiently than using Jetty’s performance regression benchmarks.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Identification of Performance Changes at Code Level\",\"authors\":\"D. Reichelt, Stefan Kühne, W. Hasselbring\",\"doi\":\"10.1109/QRS57517.2022.00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop software with optimal performance, even small performance changes need to be identified. Identifying performance changes is challenging since the performance of software is influenced by non-deterministic factors. Therefore, not every performance change is measurable with reasonable effort. In this work, we discuss which performance changes are measurable at code level with reasonable measurement effort and how to identify them. We present (1) an analysis of the boundaries of measuring performance changes, (2) an approach for determining a configuration for reproducible performance change identification, and (3) an evaluation comparing of how well our approach is able to identify performance changes in the application server Jetty compared with the usage of Jetty’s own performance regression benchmarks.Thereby, we find (1) that small performance differences are only measurable by fine-grained measurement workloads, (2) that performance changes caused by the change of one operation can be identified using a unit-test-sized workload definition and a suitable configuration, and (3) that using our approach identifies small performance regressions more efficiently than using Jetty’s performance regression benchmarks.\",\"PeriodicalId\":143812,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS57517.2022.00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了开发具有最佳性能的软件,即使是很小的性能变化也需要被识别出来。识别性能变化具有挑战性,因为软件的性能受到不确定性因素的影响。因此,并不是每一个性能变化都可以通过合理的努力来衡量。在这项工作中,我们讨论了哪些性能变化是可以在代码级别上通过合理的测量工作来测量的,以及如何识别它们。我们提出(1)对测量性能变化的边界的分析,(2)确定可重复的性能变化识别的配置的方法,以及(3)与使用Jetty自己的性能回归基准相比,我们的方法能够识别应用服务器Jetty中的性能变化的程度的评估比较。因此,我们发现(1)微小的性能差异只能通过细粒度的测量工作负载来测量,(2)可以使用单元测试大小的工作负载定义和合适的配置来识别由一个操作变化引起的性能变化,以及(3)使用我们的方法比使用Jetty的性能回归基准更有效地识别小的性能回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Identification of Performance Changes at Code Level
To develop software with optimal performance, even small performance changes need to be identified. Identifying performance changes is challenging since the performance of software is influenced by non-deterministic factors. Therefore, not every performance change is measurable with reasonable effort. In this work, we discuss which performance changes are measurable at code level with reasonable measurement effort and how to identify them. We present (1) an analysis of the boundaries of measuring performance changes, (2) an approach for determining a configuration for reproducible performance change identification, and (3) an evaluation comparing of how well our approach is able to identify performance changes in the application server Jetty compared with the usage of Jetty’s own performance regression benchmarks.Thereby, we find (1) that small performance differences are only measurable by fine-grained measurement workloads, (2) that performance changes caused by the change of one operation can be identified using a unit-test-sized workload definition and a suitable configuration, and (3) that using our approach identifies small performance regressions more efficiently than using Jetty’s performance regression benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous Usability Requirements Evaluation based on Runtime User Behavior Mining Fine-Tuning Pre-Trained Model to Extract Undesired Behaviors from App Reviews An Empirical Study on Source Code Feature Extraction in Preprocessing of IR-Based Requirements Traceability Predictive Mutation Analysis of Test Case Prioritization for Deep Neural Networks Conceptualizing the Secure Machine Learning Operations (SecMLOps) Paradigm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1