Z. Liao, C. Carr, D. Cross, C. Miller, P. Miller, M. Monticelli, B. Olejniczak, R. Raman, D. VanBlarcom, B. Welday, P. Whitman, L. Wong, T. Suratwala
{"title":"国家点火装置熔融硅碎片屏蔽的损伤性能","authors":"Z. Liao, C. Carr, D. Cross, C. Miller, P. Miller, M. Monticelli, B. Olejniczak, R. Raman, D. VanBlarcom, B. Welday, P. Whitman, L. Wong, T. Suratwala","doi":"10.1117/12.2536452","DOIUrl":null,"url":null,"abstract":"The final optics in the National Ignition Facility (NIF) are protected from target debris by sacrificial (disposable) debris shields (DDS) comprised of 3-mm thick Borofloat. While relatively inexpensive, Borofloat has been found to have bulk inclusions which, under UV illumination, damage, grow, and occasional erupt though the surface of the DDS. We have shown previously that debris generated from Input Surface Bulk Eruptions (ISBE) are a significant source of damage on NIF. Inclusion-free fused silica debris shield (FSDS) have been installed in between the DDS and the final optics on some NIF beam lines to test their efficacy in mitigating damage initiation. We will show results of the damage performance of the FSDS and its role in protecting the final optics. These results will help in our economic analysis of the potential benefits of using FSDS to protect NIF final optics.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Damage performance of fused silica debris shield at the National Ignition Facility\",\"authors\":\"Z. Liao, C. Carr, D. Cross, C. Miller, P. Miller, M. Monticelli, B. Olejniczak, R. Raman, D. VanBlarcom, B. Welday, P. Whitman, L. Wong, T. Suratwala\",\"doi\":\"10.1117/12.2536452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The final optics in the National Ignition Facility (NIF) are protected from target debris by sacrificial (disposable) debris shields (DDS) comprised of 3-mm thick Borofloat. While relatively inexpensive, Borofloat has been found to have bulk inclusions which, under UV illumination, damage, grow, and occasional erupt though the surface of the DDS. We have shown previously that debris generated from Input Surface Bulk Eruptions (ISBE) are a significant source of damage on NIF. Inclusion-free fused silica debris shield (FSDS) have been installed in between the DDS and the final optics on some NIF beam lines to test their efficacy in mitigating damage initiation. We will show results of the damage performance of the FSDS and its role in protecting the final optics. These results will help in our economic analysis of the potential benefits of using FSDS to protect NIF final optics.\",\"PeriodicalId\":202227,\"journal\":{\"name\":\"Laser Damage\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2536452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2536452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Damage performance of fused silica debris shield at the National Ignition Facility
The final optics in the National Ignition Facility (NIF) are protected from target debris by sacrificial (disposable) debris shields (DDS) comprised of 3-mm thick Borofloat. While relatively inexpensive, Borofloat has been found to have bulk inclusions which, under UV illumination, damage, grow, and occasional erupt though the surface of the DDS. We have shown previously that debris generated from Input Surface Bulk Eruptions (ISBE) are a significant source of damage on NIF. Inclusion-free fused silica debris shield (FSDS) have been installed in between the DDS and the final optics on some NIF beam lines to test their efficacy in mitigating damage initiation. We will show results of the damage performance of the FSDS and its role in protecting the final optics. These results will help in our economic analysis of the potential benefits of using FSDS to protect NIF final optics.