迈向一个完全自动化的工具来注释相性肌电图活动

P. Karvelis, G. Georgoulas, Jacqueline A. Fairley, C. Stylios, D. Rye, D. Bliwise
{"title":"迈向一个完全自动化的工具来注释相性肌电图活动","authors":"P. Karvelis, G. Georgoulas, Jacqueline A. Fairley, C. Stylios, D. Rye, D. Bliwise","doi":"10.1109/MED.2016.7535935","DOIUrl":null,"url":null,"abstract":"Salient muscle activity identification via the phasic electromyographic metric (PEM) in human polysomnograms/sleep studies (PSGs) represent a potential quantitative metric to aid in differentiation between neurodegenerative disorder populations and age-matched controls. A major impairment to the implementation of PEM analysis for clinical assessment of neurodegenerative disorders includes the time consuming aspects for both visual and automated supervised methods, which require exhaustive expert scoring of PEM and non-PEM events. In order to surmount the aforementioned concerns, we propose a semi-supervised classification methodology encased within an easy-to-use graphical user interface (GUI) utilizing an embedded Minimum Description Length (MDL) criterion to automatically classify PEM and non-PEM events based on expert labeling of a single PEM instance. Results indicate that the application of a semi-supervised approach for PEM identification provides an excellent option to reduce the labeling burden within current human PSG muscle activity identification schemes.","PeriodicalId":428139,"journal":{"name":"2016 24th Mediterranean Conference on Control and Automation (MED)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a fully automated tool for annotation of phasic electromyographic activity\",\"authors\":\"P. Karvelis, G. Georgoulas, Jacqueline A. Fairley, C. Stylios, D. Rye, D. Bliwise\",\"doi\":\"10.1109/MED.2016.7535935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salient muscle activity identification via the phasic electromyographic metric (PEM) in human polysomnograms/sleep studies (PSGs) represent a potential quantitative metric to aid in differentiation between neurodegenerative disorder populations and age-matched controls. A major impairment to the implementation of PEM analysis for clinical assessment of neurodegenerative disorders includes the time consuming aspects for both visual and automated supervised methods, which require exhaustive expert scoring of PEM and non-PEM events. In order to surmount the aforementioned concerns, we propose a semi-supervised classification methodology encased within an easy-to-use graphical user interface (GUI) utilizing an embedded Minimum Description Length (MDL) criterion to automatically classify PEM and non-PEM events based on expert labeling of a single PEM instance. Results indicate that the application of a semi-supervised approach for PEM identification provides an excellent option to reduce the labeling burden within current human PSG muscle activity identification schemes.\",\"PeriodicalId\":428139,\"journal\":{\"name\":\"2016 24th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2016.7535935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2016.7535935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在人类多导睡眠图/睡眠研究(psg)中,通过相相肌电测量(PEM)来识别显著肌活动是一种潜在的定量指标,可以帮助区分神经退行性疾病人群和年龄匹配的对照组。在神经退行性疾病的临床评估中实施质子交换膜分析的主要障碍包括视觉和自动监督方法的耗时方面,这需要对质子交换膜和非质子交换膜事件进行详尽的专家评分。为了克服上述问题,我们提出了一种半监督分类方法,该方法包含在一个易于使用的图形用户界面(GUI)中,利用嵌入式最小描述长度(MDL)标准,根据单个PEM实例的专家标记自动分类PEM和非PEM事件。结果表明,应用半监督方法进行PEM识别提供了一个很好的选择,以减少当前人类PSG肌肉活动识别方案中的标记负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a fully automated tool for annotation of phasic electromyographic activity
Salient muscle activity identification via the phasic electromyographic metric (PEM) in human polysomnograms/sleep studies (PSGs) represent a potential quantitative metric to aid in differentiation between neurodegenerative disorder populations and age-matched controls. A major impairment to the implementation of PEM analysis for clinical assessment of neurodegenerative disorders includes the time consuming aspects for both visual and automated supervised methods, which require exhaustive expert scoring of PEM and non-PEM events. In order to surmount the aforementioned concerns, we propose a semi-supervised classification methodology encased within an easy-to-use graphical user interface (GUI) utilizing an embedded Minimum Description Length (MDL) criterion to automatically classify PEM and non-PEM events based on expert labeling of a single PEM instance. Results indicate that the application of a semi-supervised approach for PEM identification provides an excellent option to reduce the labeling burden within current human PSG muscle activity identification schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust multi-model fault detection and isolation with a state-space neural network Identification algorithm for piecewise affine systems with bounded disturbances P-D state feedback controllers for common I/O decoupling of multi model descriptor systems Face recognition using fusion of PCA and LDA: Borda count approach Novel stability analysis of direct MRAC with redundant inputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1