基于SLC的高增益DC-DC转换器的新型可重构拓扑

A. Iqbal, M. Samiullah, I. Ashraf, M. A. Hitami, E. Kabalci
{"title":"基于SLC的高增益DC-DC转换器的新型可重构拓扑","authors":"A. Iqbal, M. Samiullah, I. Ashraf, M. A. Hitami, E. Kabalci","doi":"10.1109/gpecom55404.2022.9815642","DOIUrl":null,"url":null,"abstract":"Standalone renewable sources such as PV (Photovoltaic) and FC (Fuel cells) are often employed as input sources to supply high voltage DC buses of microgrids. Conventional DC-DC converter used as interlinking device would require a high duty ratio operation to meet the desired bus voltage which is usually perilous for the device health resulting in many detrimental effects such as diodes reverse recovery issues, unwanted transient response, losses and reduction in efficiency. To deal with such issues and for many other industrial applications, a two offspring family of Switched-inductor-capacitor (SLC) based converters have been discussed in this article. The proposed converter is realized without using any transformer, coupled-inductor, or cascaded and interleaved structures. Only two active switches with low voltage stress (half the output) are used to attain a sufficiently high voltage gain. Apart from the voltage gain, a critical inference is made after analyzing the reconfigured structure of an SLC network that a slight variation in the architecture delivers such a high gain compared to the counterpart design. The proposed converters have been analyzed theoretically in CCM and DCM, and then verified through the simulation results.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel re-configurable topologies of SLC based high gain DC-DC converters\",\"authors\":\"A. Iqbal, M. Samiullah, I. Ashraf, M. A. Hitami, E. Kabalci\",\"doi\":\"10.1109/gpecom55404.2022.9815642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standalone renewable sources such as PV (Photovoltaic) and FC (Fuel cells) are often employed as input sources to supply high voltage DC buses of microgrids. Conventional DC-DC converter used as interlinking device would require a high duty ratio operation to meet the desired bus voltage which is usually perilous for the device health resulting in many detrimental effects such as diodes reverse recovery issues, unwanted transient response, losses and reduction in efficiency. To deal with such issues and for many other industrial applications, a two offspring family of Switched-inductor-capacitor (SLC) based converters have been discussed in this article. The proposed converter is realized without using any transformer, coupled-inductor, or cascaded and interleaved structures. Only two active switches with low voltage stress (half the output) are used to attain a sufficiently high voltage gain. Apart from the voltage gain, a critical inference is made after analyzing the reconfigured structure of an SLC network that a slight variation in the architecture delivers such a high gain compared to the counterpart design. The proposed converters have been analyzed theoretically in CCM and DCM, and then verified through the simulation results.\",\"PeriodicalId\":441321,\"journal\":{\"name\":\"2022 4th Global Power, Energy and Communication Conference (GPECOM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th Global Power, Energy and Communication Conference (GPECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/gpecom55404.2022.9815642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

独立的可再生能源如PV(光伏)和FC(燃料电池)通常被用作微电网高压直流母线的输入源。作为互连器件的传统DC-DC变换器需要高占空比操作以满足所需的母线电压,这通常对器件健康是危险的,导致许多有害影响,如二极管反向恢复问题,不必要的瞬态响应,损耗和效率降低。为了解决这些问题和许多其他工业应用,本文讨论了基于开关电感-电容器(SLC)的两个子代系列转换器。该变换器不使用任何变压器、耦合电感或级联和交错结构。仅使用两个具有低电压应力(输出的一半)的有源开关即可获得足够高的电压增益。除了电压增益之外,在分析了SLC网络的重新配置结构之后,得出了一个关键的推断,即与对应设计相比,结构的轻微变化提供了如此高的增益。对所提出的变换器在CCM和DCM中进行了理论分析,并通过仿真结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel re-configurable topologies of SLC based high gain DC-DC converters
Standalone renewable sources such as PV (Photovoltaic) and FC (Fuel cells) are often employed as input sources to supply high voltage DC buses of microgrids. Conventional DC-DC converter used as interlinking device would require a high duty ratio operation to meet the desired bus voltage which is usually perilous for the device health resulting in many detrimental effects such as diodes reverse recovery issues, unwanted transient response, losses and reduction in efficiency. To deal with such issues and for many other industrial applications, a two offspring family of Switched-inductor-capacitor (SLC) based converters have been discussed in this article. The proposed converter is realized without using any transformer, coupled-inductor, or cascaded and interleaved structures. Only two active switches with low voltage stress (half the output) are used to attain a sufficiently high voltage gain. Apart from the voltage gain, a critical inference is made after analyzing the reconfigured structure of an SLC network that a slight variation in the architecture delivers such a high gain compared to the counterpart design. The proposed converters have been analyzed theoretically in CCM and DCM, and then verified through the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted Emissions Analysis of DC-DC Buck Converter A Study on the Effect of Phase Shifter Quantization Error on the Spectral Efficiency Using Neural Network Delay Margin Computation of Generator Excitation Control System with Incommensurate Time Delays Using Critical Eigenvalue Tracing Method ICT Enabled Smart Street Parking System for Smart Cities Experimental Impact Analysis of the Refrigerator Cable Design On Disturbance Power Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1