基于流计算的忆阻器横条数据驱动近似边缘检测

Jodh S. Pannu, Sunny Raj, S. Fernandes, Sumit Kumar Jha, Dwaipayan Chakraborty, Sarah Rafiq, N. Cady
{"title":"基于流计算的忆阻器横条数据驱动近似边缘检测","authors":"Jodh S. Pannu, Sunny Raj, S. Fernandes, Sumit Kumar Jha, Dwaipayan Chakraborty, Sarah Rafiq, N. Cady","doi":"10.1109/ANS47466.2019.8963745","DOIUrl":null,"url":null,"abstract":"Detection of edges in images is an elementary operation in computer vision that can greatly benefit from an implementation with a low power-delay product. In this paper, we propose a new approach for designing nanoscale memristor crossbars that can implement approximate edge-detection using flow-based computing. Instead of the traditional Boolean approach, our methodology uses a ternary logic approach with three outcomes: True representing an edge, False that representing the absence of an edge, and Don’t Care that represents an ambivalent response. Our data-driven design approach uses a corpus of human-labeled edges in order to learn the concept of an edge in an image. A massively parallel simulated annealing search algorithm over 96 processes is used to obtain the design of the memristor crossbar for edge detection. We show that our approximate crossbar design is effective in computing edges of images on the BSD500 benchmark.","PeriodicalId":375888,"journal":{"name":"2019 IEEE Albany Nanotechnology Symposium (ANS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data-driven Approximate Edge Detection using Flow-based Computing on Memristor Crossbars\",\"authors\":\"Jodh S. Pannu, Sunny Raj, S. Fernandes, Sumit Kumar Jha, Dwaipayan Chakraborty, Sarah Rafiq, N. Cady\",\"doi\":\"10.1109/ANS47466.2019.8963745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of edges in images is an elementary operation in computer vision that can greatly benefit from an implementation with a low power-delay product. In this paper, we propose a new approach for designing nanoscale memristor crossbars that can implement approximate edge-detection using flow-based computing. Instead of the traditional Boolean approach, our methodology uses a ternary logic approach with three outcomes: True representing an edge, False that representing the absence of an edge, and Don’t Care that represents an ambivalent response. Our data-driven design approach uses a corpus of human-labeled edges in order to learn the concept of an edge in an image. A massively parallel simulated annealing search algorithm over 96 processes is used to obtain the design of the memristor crossbar for edge detection. We show that our approximate crossbar design is effective in computing edges of images on the BSD500 benchmark.\",\"PeriodicalId\":375888,\"journal\":{\"name\":\"2019 IEEE Albany Nanotechnology Symposium (ANS)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Albany Nanotechnology Symposium (ANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANS47466.2019.8963745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Albany Nanotechnology Symposium (ANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANS47466.2019.8963745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

图像边缘检测是计算机视觉中的一项基本操作,它可以从低功耗延迟产品的实现中受益匪浅。在本文中,我们提出了一种新的方法来设计纳米级记忆电阻横条,可以实现近似边缘检测基于流计算。与传统的布尔方法不同,我们的方法使用了三种结果的三元逻辑方法:True表示有边,False表示没有边,Don 't Care表示矛盾的响应。我们的数据驱动设计方法使用人工标记的边缘语料库来学习图像中边缘的概念。采用96次大规模并行模拟退火搜索算法,得到了用于边缘检测的忆阻交叉棒的设计。我们在BSD500基准上证明了我们的近似横杆设计在计算图像边缘方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven Approximate Edge Detection using Flow-based Computing on Memristor Crossbars
Detection of edges in images is an elementary operation in computer vision that can greatly benefit from an implementation with a low power-delay product. In this paper, we propose a new approach for designing nanoscale memristor crossbars that can implement approximate edge-detection using flow-based computing. Instead of the traditional Boolean approach, our methodology uses a ternary logic approach with three outcomes: True representing an edge, False that representing the absence of an edge, and Don’t Care that represents an ambivalent response. Our data-driven design approach uses a corpus of human-labeled edges in order to learn the concept of an edge in an image. A massively parallel simulated annealing search algorithm over 96 processes is used to obtain the design of the memristor crossbar for edge detection. We show that our approximate crossbar design is effective in computing edges of images on the BSD500 benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material and process improvements towards sub 36nm pitch EUV single exposure A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era Nanodevices Versus Bacteria in a Box: The Correspondence between Classical Electrodynamics and the Quantum Mechanics Path Integral Investigation of Quantification of Agglomeration Level of Silica Particles in CMP Slurry for Creating the Quality Prediction Formula by AI Technology Data-driven Approximate Edge Detection using Flow-based Computing on Memristor Crossbars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1