{"title":"光伏热(PV/T)集热器的数学建模","authors":"Gamze Soytürk, Önder Kizilkan, M. A. Ezan","doi":"10.55974/utbd.1168551","DOIUrl":null,"url":null,"abstract":"Even though the performance of photovoltaic/thermal (PV/T) panels had been examined both computationally and experimentally for some time, the thermal models created in earlier research were mostly steady-state models for estimating the annual yields. In this study, the solar thermal collector and photovoltaic (PV) cells are combined to create the PV/T collector, and water-ethylene glycol is utilized as a coolant to lower the temperature of the PV panels. The goal of this study is to analyze a water-ethylene glycol-based PV/T collector numerically. Time-dependent dynamic analyzes were performed using the MATLAB software program. Investigations were also done into how the electrical power produced and the temperatures of the fluid outlet and PV/T surface changed over time. As a result of the annual analysis, the maximum power of PV/T is calculated as 155 W. Also, the maximum surface temperature of PV/T panel’s is 56.62°C.","PeriodicalId":106148,"journal":{"name":"Uluslararası Teknolojik Bilimler Dergisi","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of a photovoltaic thermal (PV/T) collector\",\"authors\":\"Gamze Soytürk, Önder Kizilkan, M. A. Ezan\",\"doi\":\"10.55974/utbd.1168551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though the performance of photovoltaic/thermal (PV/T) panels had been examined both computationally and experimentally for some time, the thermal models created in earlier research were mostly steady-state models for estimating the annual yields. In this study, the solar thermal collector and photovoltaic (PV) cells are combined to create the PV/T collector, and water-ethylene glycol is utilized as a coolant to lower the temperature of the PV panels. The goal of this study is to analyze a water-ethylene glycol-based PV/T collector numerically. Time-dependent dynamic analyzes were performed using the MATLAB software program. Investigations were also done into how the electrical power produced and the temperatures of the fluid outlet and PV/T surface changed over time. As a result of the annual analysis, the maximum power of PV/T is calculated as 155 W. Also, the maximum surface temperature of PV/T panel’s is 56.62°C.\",\"PeriodicalId\":106148,\"journal\":{\"name\":\"Uluslararası Teknolojik Bilimler Dergisi\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uluslararası Teknolojik Bilimler Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55974/utbd.1168551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Teknolojik Bilimler Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55974/utbd.1168551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical modeling of a photovoltaic thermal (PV/T) collector
Even though the performance of photovoltaic/thermal (PV/T) panels had been examined both computationally and experimentally for some time, the thermal models created in earlier research were mostly steady-state models for estimating the annual yields. In this study, the solar thermal collector and photovoltaic (PV) cells are combined to create the PV/T collector, and water-ethylene glycol is utilized as a coolant to lower the temperature of the PV panels. The goal of this study is to analyze a water-ethylene glycol-based PV/T collector numerically. Time-dependent dynamic analyzes were performed using the MATLAB software program. Investigations were also done into how the electrical power produced and the temperatures of the fluid outlet and PV/T surface changed over time. As a result of the annual analysis, the maximum power of PV/T is calculated as 155 W. Also, the maximum surface temperature of PV/T panel’s is 56.62°C.