通用小波基的快速阈值Landweber算法:在三维反褶积显微镜中的应用

C. Vonesch, Michael Unser
{"title":"通用小波基的快速阈值Landweber算法:在三维反褶积显微镜中的应用","authors":"C. Vonesch, Michael Unser","doi":"10.1109/ISBI.2008.4541255","DOIUrl":null,"url":null,"abstract":"Wavelet-domain lscr1-regularization is a promising approach to deconvolution. The corresponding variational problem can be solved using a \"thresholded Landweber\" (TL) algorithm. While this iterative procedure is simple to implement, it is known to converge slowly. In this paper, we give the principle of a modified algorithm that is substantially faster. The method is applicable to arbitrary wavelet representations, thus generalizing our previous work which was restricted to the or- thonormal Shannon wavelet basis. Numerical experiments show that we can obtain up to a 10-fold speed-up with respect to the existing TL algorithm, while providing the same restoration quality. We also present an example with real data that demonstrates the feasibility of wavelet-domain regularization for 3D deconvolution microscopy.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A fast thresholded Landweber algorithm for general wavelet bases: Application to 3D deconvolution microscopy\",\"authors\":\"C. Vonesch, Michael Unser\",\"doi\":\"10.1109/ISBI.2008.4541255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet-domain lscr1-regularization is a promising approach to deconvolution. The corresponding variational problem can be solved using a \\\"thresholded Landweber\\\" (TL) algorithm. While this iterative procedure is simple to implement, it is known to converge slowly. In this paper, we give the principle of a modified algorithm that is substantially faster. The method is applicable to arbitrary wavelet representations, thus generalizing our previous work which was restricted to the or- thonormal Shannon wavelet basis. Numerical experiments show that we can obtain up to a 10-fold speed-up with respect to the existing TL algorithm, while providing the same restoration quality. We also present an example with real data that demonstrates the feasibility of wavelet-domain regularization for 3D deconvolution microscopy.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

小波域lscr1正则化是一种很有前途的反褶积方法。相应的变分问题可以用“阈值Landweber”(TL)算法求解。虽然这个迭代过程很容易实现,但众所周知它收敛速度很慢。在本文中,我们给出了一个改进算法的原理,该算法大大加快了速度。该方法适用于任意小波表示,从而推广了我们以往局限于非正态香农小波基的工作。数值实验表明,与现有的TL算法相比,我们可以在提供相同恢复质量的情况下获得高达10倍的加速。最后给出了一个实际数据的例子,证明了小波域正则化用于三维反褶积显微镜的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast thresholded Landweber algorithm for general wavelet bases: Application to 3D deconvolution microscopy
Wavelet-domain lscr1-regularization is a promising approach to deconvolution. The corresponding variational problem can be solved using a "thresholded Landweber" (TL) algorithm. While this iterative procedure is simple to implement, it is known to converge slowly. In this paper, we give the principle of a modified algorithm that is substantially faster. The method is applicable to arbitrary wavelet representations, thus generalizing our previous work which was restricted to the or- thonormal Shannon wavelet basis. Numerical experiments show that we can obtain up to a 10-fold speed-up with respect to the existing TL algorithm, while providing the same restoration quality. We also present an example with real data that demonstrates the feasibility of wavelet-domain regularization for 3D deconvolution microscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1