交叉目标姿态检测的目标自适应图

Bin Liang, Yonghao Fu, Lin Gui, Min Yang, Jiachen Du, Yulan He, Ruifeng Xu
{"title":"交叉目标姿态检测的目标自适应图","authors":"Bin Liang, Yonghao Fu, Lin Gui, Min Yang, Jiachen Du, Yulan He, Ruifeng Xu","doi":"10.1145/3442381.3449790","DOIUrl":null,"url":null,"abstract":"Target plays an essential role in stance detection of an opinionated review/claim, since the stance expressed in the text often depends on the target. In practice, we need to deal with targets unseen in the annotated training data. As such, detecting stance for an unknown or unseen target is an important research problem. This paper presents a novel approach that automatically identifies and adapts the target-dependent and target-independent roles that a word plays with respect to a specific target in stance expressions, so as to achieve cross-target stance detection. More concretely, we explore a novel solution of constructing heterogeneous target-adaptive pragmatics dependency graphs (TPDG) for each sentence towards a given target. An in-target graph is constructed to produce inherent pragmatics dependencies of words for a distinct target. In addition, another cross-target graph is constructed to develop the versatility of words across all targets for boosting the learning of dominant word-level stance expressions available to an unknown target. A novel graph-aware model with interactive Graphical Convolutional Network (GCN) blocks is developed to derive the target-adaptive graph representation of the context for stance detection. The experimental results on a number of benchmark datasets show that our proposed model outperforms state-of-the-art methods in cross-target stance detection.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Target-adaptive Graph for Cross-target Stance Detection\",\"authors\":\"Bin Liang, Yonghao Fu, Lin Gui, Min Yang, Jiachen Du, Yulan He, Ruifeng Xu\",\"doi\":\"10.1145/3442381.3449790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target plays an essential role in stance detection of an opinionated review/claim, since the stance expressed in the text often depends on the target. In practice, we need to deal with targets unseen in the annotated training data. As such, detecting stance for an unknown or unseen target is an important research problem. This paper presents a novel approach that automatically identifies and adapts the target-dependent and target-independent roles that a word plays with respect to a specific target in stance expressions, so as to achieve cross-target stance detection. More concretely, we explore a novel solution of constructing heterogeneous target-adaptive pragmatics dependency graphs (TPDG) for each sentence towards a given target. An in-target graph is constructed to produce inherent pragmatics dependencies of words for a distinct target. In addition, another cross-target graph is constructed to develop the versatility of words across all targets for boosting the learning of dominant word-level stance expressions available to an unknown target. A novel graph-aware model with interactive Graphical Convolutional Network (GCN) blocks is developed to derive the target-adaptive graph representation of the context for stance detection. The experimental results on a number of benchmark datasets show that our proposed model outperforms state-of-the-art methods in cross-target stance detection.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

由于文本中所表达的立场往往取决于目标,因此目标在武断评论/主张的立场检测中起着至关重要的作用。在实践中,我们需要处理在标注的训练数据中看不到的目标。因此,对未知或看不见的目标进行姿态检测是一个重要的研究问题。本文提出了一种新的方法,该方法自动识别和适应单词在姿态表达中相对于特定目标所扮演的目标依赖和目标独立的角色,从而实现跨目标姿态检测。更具体地说,我们探索了一种针对给定目标的每个句子构建异构目标自适应语用依赖图(TPDG)的新解决方案。通过构建目标内图来生成不同目标词的内在语用依赖关系。此外,我们还构建了另一个跨目标图来开发单词在所有目标上的通用性,以促进对未知目标可用的优势词级姿态表达的学习。提出了一种新的基于交互式图形卷积网络(GCN)块的图形感知模型,以导出用于姿态检测的上下文的目标自适应图形表示。在多个基准数据集上的实验结果表明,我们提出的模型在交叉目标姿态检测方面优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Target-adaptive Graph for Cross-target Stance Detection
Target plays an essential role in stance detection of an opinionated review/claim, since the stance expressed in the text often depends on the target. In practice, we need to deal with targets unseen in the annotated training data. As such, detecting stance for an unknown or unseen target is an important research problem. This paper presents a novel approach that automatically identifies and adapts the target-dependent and target-independent roles that a word plays with respect to a specific target in stance expressions, so as to achieve cross-target stance detection. More concretely, we explore a novel solution of constructing heterogeneous target-adaptive pragmatics dependency graphs (TPDG) for each sentence towards a given target. An in-target graph is constructed to produce inherent pragmatics dependencies of words for a distinct target. In addition, another cross-target graph is constructed to develop the versatility of words across all targets for boosting the learning of dominant word-level stance expressions available to an unknown target. A novel graph-aware model with interactive Graphical Convolutional Network (GCN) blocks is developed to derive the target-adaptive graph representation of the context for stance detection. The experimental results on a number of benchmark datasets show that our proposed model outperforms state-of-the-art methods in cross-target stance detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1