基于卷积门控循环单元的深度假视频检测

Yifeng Tu, Yang Liu, Xueming Li
{"title":"基于卷积门控循环单元的深度假视频检测","authors":"Yifeng Tu, Yang Liu, Xueming Li","doi":"10.1145/3457682.3457736","DOIUrl":null,"url":null,"abstract":"Rapid development in deep learning is making it easier to create fake videos known as “deepfake” videos in which human faces are swapped. Since deepfake videos are difficult to recognize by human eyes, it becomes important to automatically detect these forgeries and prevent their abuse. In this paper, we propose a deep neural network model to detect deepfake videos using a convolutional neural network (CNN) to extract frame-level features. These features are then used to train a convolutional GRU that learns to distinguish between fake and real videos. Evaluation is performed on the recently released Celeb-DF(v2)datasets where a state-of-art AUC score was achieved.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deepfake Video Detection by Using Convolutional Gated Recurrent Unit\",\"authors\":\"Yifeng Tu, Yang Liu, Xueming Li\",\"doi\":\"10.1145/3457682.3457736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid development in deep learning is making it easier to create fake videos known as “deepfake” videos in which human faces are swapped. Since deepfake videos are difficult to recognize by human eyes, it becomes important to automatically detect these forgeries and prevent their abuse. In this paper, we propose a deep neural network model to detect deepfake videos using a convolutional neural network (CNN) to extract frame-level features. These features are then used to train a convolutional GRU that learns to distinguish between fake and real videos. Evaluation is performed on the recently released Celeb-DF(v2)datasets where a state-of-art AUC score was achieved.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

深度学习的快速发展使得制作被称为“deepfake”的假视频变得更容易,在这些视频中,人们交换了人脸。由于深度伪造视频很难被人眼识别,因此自动检测这些伪造并防止其滥用变得非常重要。在本文中,我们提出了一种深度神经网络模型,使用卷积神经网络(CNN)提取帧级特征来检测深度假视频。然后,这些特征被用来训练一个卷积GRU,该GRU学会区分假视频和真视频。对最近发布的Celeb-DF(v2)数据集进行评估,获得了最先进的AUC评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deepfake Video Detection by Using Convolutional Gated Recurrent Unit
Rapid development in deep learning is making it easier to create fake videos known as “deepfake” videos in which human faces are swapped. Since deepfake videos are difficult to recognize by human eyes, it becomes important to automatically detect these forgeries and prevent their abuse. In this paper, we propose a deep neural network model to detect deepfake videos using a convolutional neural network (CNN) to extract frame-level features. These features are then used to train a convolutional GRU that learns to distinguish between fake and real videos. Evaluation is performed on the recently released Celeb-DF(v2)datasets where a state-of-art AUC score was achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus Construction and Entity Recognition for the Field of Industrial Robot Fault Diagnosis GCN2-NAA: Two-stage Graph Convolutional Networks with Node-Aware Attention for Joint Entity and Relation Extraction A Practical Indoor and Outdoor Seamless Navigation System Based on Electronic Map and Geomagnetism SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network Bird Songs Recognition Based on Ensemble Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1