运动科学中运动分析的无标记测量技术

Yao Meng, I. Bíró, J. Sárosi
{"title":"运动科学中运动分析的无标记测量技术","authors":"Yao Meng, I. Bíró, J. Sárosi","doi":"10.14232/analecta.2023.2.24-31","DOIUrl":null,"url":null,"abstract":"Markerless motion capture system and X-ray fluoroscopy as two markerless measurement systems were introduced to the application method in sports biomechanical areas. An overview of the technological process, data accuracy, suggested movements, and recommended body parts were explained. The markerless motion capture system consists of four parts: camera, body model, image feature, and algorithms. Even though the markerless motion capture system seems promising, it is not yet known whether these systems can be used to achieve the required accuracy and whether they can be appropriately used in sports biomechanics and clinical research. The biplane fluoroscopy technique analyzes motion data by collecting, image calibrating, and processing, which is effective for determining small joint kinematic changes and calculating joint angles. The method was used to measure walking and jumping movements primarily because of the experimental conditions and mainly to detect the data of lower limb joints.","PeriodicalId":213647,"journal":{"name":"Analecta Technica Szegedinensia","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Markerless measurement techniques for motion analysis in sports science\",\"authors\":\"Yao Meng, I. Bíró, J. Sárosi\",\"doi\":\"10.14232/analecta.2023.2.24-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markerless motion capture system and X-ray fluoroscopy as two markerless measurement systems were introduced to the application method in sports biomechanical areas. An overview of the technological process, data accuracy, suggested movements, and recommended body parts were explained. The markerless motion capture system consists of four parts: camera, body model, image feature, and algorithms. Even though the markerless motion capture system seems promising, it is not yet known whether these systems can be used to achieve the required accuracy and whether they can be appropriately used in sports biomechanics and clinical research. The biplane fluoroscopy technique analyzes motion data by collecting, image calibrating, and processing, which is effective for determining small joint kinematic changes and calculating joint angles. The method was used to measure walking and jumping movements primarily because of the experimental conditions and mainly to detect the data of lower limb joints.\",\"PeriodicalId\":213647,\"journal\":{\"name\":\"Analecta Technica Szegedinensia\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analecta Technica Szegedinensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/analecta.2023.2.24-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analecta Technica Szegedinensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/analecta.2023.2.24-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

介绍了无标记运动捕捉系统和x线透视作为两种无标记测量系统在运动生物力学领域的应用方法。概述了技术流程、数据准确性、建议的动作和建议的身体部位。无标记动作捕捉系统由相机、人体模型、图像特征和算法四部分组成。尽管无标记运动捕捉系统看起来很有前途,但目前尚不清楚这些系统是否可以达到所需的精度,以及它们是否可以适当地用于运动生物力学和临床研究。双翼透视技术通过采集、图像校正和处理对运动数据进行分析,可以有效地确定关节的微小运动变化和计算关节角度。由于实验条件的限制,该方法主要用于行走和跳跃运动的测量,主要检测下肢关节的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Markerless measurement techniques for motion analysis in sports science
Markerless motion capture system and X-ray fluoroscopy as two markerless measurement systems were introduced to the application method in sports biomechanical areas. An overview of the technological process, data accuracy, suggested movements, and recommended body parts were explained. The markerless motion capture system consists of four parts: camera, body model, image feature, and algorithms. Even though the markerless motion capture system seems promising, it is not yet known whether these systems can be used to achieve the required accuracy and whether they can be appropriately used in sports biomechanics and clinical research. The biplane fluoroscopy technique analyzes motion data by collecting, image calibrating, and processing, which is effective for determining small joint kinematic changes and calculating joint angles. The method was used to measure walking and jumping movements primarily because of the experimental conditions and mainly to detect the data of lower limb joints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Situation of Freight Transport and Other Logistics Tasks in Laos Dielectric Monitoring of Microwave Extraction Processes Comparative analysis of meat products made from various chicken meat raw material Development of an IoT based 3D printed Mobile Robot Platform for training of Mechatronics Engineering Students Two sample unpaired T-test power calculation using simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1