多语言多模态神经机器翻译

Salam Michael Singh, Loitongbam Sanayai Meetei, Thoudam Doren Singh, Sivaji Bandyopadhyay
{"title":"多语言多模态神经机器翻译","authors":"Salam Michael Singh, Loitongbam Sanayai Meetei, Thoudam Doren Singh, Sivaji Bandyopadhyay","doi":"10.26615/978-954-452-073-1_002","DOIUrl":null,"url":null,"abstract":"Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the multiple captions from the Multi-30K dataset to increase the lexical diversity aided with the cross-lingual transfer of information among the languages in a multilingual setup. In this multilingual and multimodal setting, the inclusion of the visual features boosts the translation quality by a significant margin. Empirical study affirms that our proposed multimodal approach achieves substantial gain in terms of the automatic score and shows robustness in handling the rare word translation in the pretext of English to/from Hindi and Telugu translation tasks.","PeriodicalId":114625,"journal":{"name":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation\",\"authors\":\"Salam Michael Singh, Loitongbam Sanayai Meetei, Thoudam Doren Singh, Sivaji Bandyopadhyay\",\"doi\":\"10.26615/978-954-452-073-1_002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the multiple captions from the Multi-30K dataset to increase the lexical diversity aided with the cross-lingual transfer of information among the languages in a multilingual setup. In this multilingual and multimodal setting, the inclusion of the visual features boosts the translation quality by a significant margin. Empirical study affirms that our proposed multimodal approach achieves substantial gain in terms of the automatic score and shows robustness in handling the rare word translation in the pretext of English to/from Hindi and Telugu translation tasks.\",\"PeriodicalId\":114625,\"journal\":{\"name\":\"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-073-1_002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-073-1_002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

基于训练数据有限的双语文本的神经机器翻译存在词汇多样性问题,降低了罕见词的翻译精度,降低了翻译系统的泛化能力。在这项工作中,我们利用来自Multi-30K数据集的多个标题来增加词汇多样性,帮助在多语言设置中跨语言的信息传递。在这种多语言、多模式的环境下,视觉特征的加入大大提高了翻译质量。实证研究表明,我们提出的多模态方法在自动评分方面取得了显著的进步,并且在处理英语到印地语和泰卢固语翻译任务中的罕见词翻译方面表现出鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation
Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the multiple captions from the Multi-30K dataset to increase the lexical diversity aided with the cross-lingual transfer of information among the languages in a multilingual setup. In this multilingual and multimodal setting, the inclusion of the visual features boosts the translation quality by a significant margin. Empirical study affirms that our proposed multimodal approach achieves substantial gain in terms of the automatic score and shows robustness in handling the rare word translation in the pretext of English to/from Hindi and Telugu translation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation Models and Tasks for Human-Centered Machine Translation Malta National Language Technology Platform: A vision for enhancing Malta’s official languages using Machine Translation Experiences of Adapting Multimodal Machine Translation Techniques for Hindi Multimodal Simultaneous Machine Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1