立体视觉任务中深度图的缩放

Y. Muratov, Dmitry I. Ustukov
{"title":"立体视觉任务中深度图的缩放","authors":"Y. Muratov, Dmitry I. Ustukov","doi":"10.1109/MECO.2019.8760202","DOIUrl":null,"url":null,"abstract":"The article proposes an algorithm for reducing the resolution of reference depth maps (Ground Truth). The evaluating method is presented as well as a comparison of error values resulting from the reference depth map size reduction to various scaling algorithms. The aim of the work is to evaluate the accuracy of scaling depth maps by the proposed algorithm. The need for scaling arises in the tasks of reducing existing different test data sets to uniform parameters of a stereo system, one of which is sensor resolution. A generic data set with the same parameters is required for designing more accurate hybrid stereo vision algorithms with elements of artificial intelligence.","PeriodicalId":141324,"journal":{"name":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling of Depth Map for Stereo Vision Tasks\",\"authors\":\"Y. Muratov, Dmitry I. Ustukov\",\"doi\":\"10.1109/MECO.2019.8760202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article proposes an algorithm for reducing the resolution of reference depth maps (Ground Truth). The evaluating method is presented as well as a comparison of error values resulting from the reference depth map size reduction to various scaling algorithms. The aim of the work is to evaluate the accuracy of scaling depth maps by the proposed algorithm. The need for scaling arises in the tasks of reducing existing different test data sets to uniform parameters of a stereo system, one of which is sensor resolution. A generic data set with the same parameters is required for designing more accurate hybrid stereo vision algorithms with elements of artificial intelligence.\",\"PeriodicalId\":141324,\"journal\":{\"name\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2019.8760202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2019.8760202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种降低参考深度图(Ground Truth)分辨率的算法。给出了评价方法,并比较了参考深度图尺寸缩减与各种缩放算法的误差值。本文的目的是评估该算法对深度图的缩放精度。在将现有的不同测试数据集简化为立体系统的统一参数(其中之一是传感器分辨率)的任务中,需要缩放。设计具有人工智能元素的混合立体视觉算法需要具有相同参数的通用数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling of Depth Map for Stereo Vision Tasks
The article proposes an algorithm for reducing the resolution of reference depth maps (Ground Truth). The evaluating method is presented as well as a comparison of error values resulting from the reference depth map size reduction to various scaling algorithms. The aim of the work is to evaluate the accuracy of scaling depth maps by the proposed algorithm. The need for scaling arises in the tasks of reducing existing different test data sets to uniform parameters of a stereo system, one of which is sensor resolution. A generic data set with the same parameters is required for designing more accurate hybrid stereo vision algorithms with elements of artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
E-Learning Tool to Enhance Technological Pedagogical Content Knowledge A scalable Echo State Networks hardware generator for embedded systems using high-level synthesis Exploiting Task-based Parallelism in Application Loops E-health Card Information System: Case Study Health Insurance Fund of Montenegro Smart Universal Multifunctional Digital Terminal/Portal Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1