CGStream:数据流的连续关联图查询

Shirui Pan, Xingquan Zhu
{"title":"CGStream:数据流的连续关联图查询","authors":"Shirui Pan, Xingquan Zhu","doi":"10.1145/2396761.2398419","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to query correlated graph in a data stream scenario, where given a query graph q an algorithm is required to retrieve all the subgraphs whose Pearson's correlation coefficients with q are greater than a threshold Θ over some graph data flowing in a stream fashion. Due to the dynamic changing nature of the stream data and the inherent complexity of the graph query process, treating graph streams as static datasets is computationally infeasible or ineffective. In the paper, we propose a novel algorithm, CGStream, to identify correlated graphs from data stream, by using a sliding window which covers a number of consecutive batches of stream data records. Our theme is to regard stream query as the traversing along a data stream and the query is achieved at a number of outlooks over the data stream. For each outlook, we derive a lower frequency bound to mine a set of frequent subgraph candidates, where the lower bound guarantees that no pattern is missing from the current outlook to the next outlook. On top of that, we derive an upper correlation bound and a heuristic rule to prune the candidate size, which helps reduce the computation cost at each outlook. Experimental results demonstrate that the proposed algorithm is several times, or even an order of magnitude, more efficient than the straightforward algorithm. Meanwhile, our algorithm achieves good performance in terms of query precision.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"CGStream: continuous correlated graph query for data streams\",\"authors\":\"Shirui Pan, Xingquan Zhu\",\"doi\":\"10.1145/2396761.2398419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to query correlated graph in a data stream scenario, where given a query graph q an algorithm is required to retrieve all the subgraphs whose Pearson's correlation coefficients with q are greater than a threshold Θ over some graph data flowing in a stream fashion. Due to the dynamic changing nature of the stream data and the inherent complexity of the graph query process, treating graph streams as static datasets is computationally infeasible or ineffective. In the paper, we propose a novel algorithm, CGStream, to identify correlated graphs from data stream, by using a sliding window which covers a number of consecutive batches of stream data records. Our theme is to regard stream query as the traversing along a data stream and the query is achieved at a number of outlooks over the data stream. For each outlook, we derive a lower frequency bound to mine a set of frequent subgraph candidates, where the lower bound guarantees that no pattern is missing from the current outlook to the next outlook. On top of that, we derive an upper correlation bound and a heuristic rule to prune the candidate size, which helps reduce the computation cost at each outlook. Experimental results demonstrate that the proposed algorithm is several times, or even an order of magnitude, more efficient than the straightforward algorithm. Meanwhile, our algorithm achieves good performance in terms of query precision.\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2398419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们提出在数据流场景中查询相关图,其中给定一个查询图q,需要一种算法来检索以流方式流动的一些图数据中Pearson与q的相关系数大于阈值Θ的所有子图。由于流数据的动态变化性质和图查询过程的固有复杂性,将图流视为静态数据集在计算上是不可行的或无效的。在本文中,我们提出了一种新的算法CGStream,该算法通过滑动窗口覆盖多个连续批次的流数据记录,从数据流中识别相关图。我们的主题是将流查询视为沿着数据流的遍历,并且查询是在数据流的多个视图上实现的。对于每个展望,我们推导出一个较低的频率界限来挖掘一组频繁子图候选,其中下界保证从当前展望到下一个展望没有模式缺失。在此基础上,我们推导了一个上相关界和一个启发式规则来修剪候选大小,这有助于减少每个前景的计算成本。实验结果表明,该算法比直接算法的效率提高了几倍,甚至一个数量级。同时,我们的算法在查询精度方面取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CGStream: continuous correlated graph query for data streams
In this paper, we propose to query correlated graph in a data stream scenario, where given a query graph q an algorithm is required to retrieve all the subgraphs whose Pearson's correlation coefficients with q are greater than a threshold Θ over some graph data flowing in a stream fashion. Due to the dynamic changing nature of the stream data and the inherent complexity of the graph query process, treating graph streams as static datasets is computationally infeasible or ineffective. In the paper, we propose a novel algorithm, CGStream, to identify correlated graphs from data stream, by using a sliding window which covers a number of consecutive batches of stream data records. Our theme is to regard stream query as the traversing along a data stream and the query is achieved at a number of outlooks over the data stream. For each outlook, we derive a lower frequency bound to mine a set of frequent subgraph candidates, where the lower bound guarantees that no pattern is missing from the current outlook to the next outlook. On top of that, we derive an upper correlation bound and a heuristic rule to prune the candidate size, which helps reduce the computation cost at each outlook. Experimental results demonstrate that the proposed algorithm is several times, or even an order of magnitude, more efficient than the straightforward algorithm. Meanwhile, our algorithm achieves good performance in terms of query precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1