A. Shadman, Ehsanur Rahman, S. Biswas, Kanak Datta, Q. Khosru
{"title":"ingaas量子阱表面沟道MOSFET的弹道输运特性及物理器件参数的影响","authors":"A. Shadman, Ehsanur Rahman, S. Biswas, Kanak Datta, Q. Khosru","doi":"10.1109/ICECE.2014.7026914","DOIUrl":null,"url":null,"abstract":"In this paper, impact of device & process parameter variation on quantum ballistic Current-Voltage (I-V) characteristics of a surface channel, High K stack gate Quantum Well MOSFET is simulated. Physical device parameters like channel thickness, gate dielectric thickness and process parameters like doping density have direct effects on quantum ballistic current. We use mode space approach with NEGF formalism to simulate Current-Voltage (I-V) characteristics. Short Channel effects (SCE) are studied from the simulation for these variations. Observed effect is scaling dielectric & channel thickness results in better subthreshold slope & Drain induced barrier lowering at the cost of On-current. By increasing doping concentration, ballistic current can be improved. However with increasing doping density, SCE effects are compromised.","PeriodicalId":335492,"journal":{"name":"8th International Conference on Electrical and Computer Engineering","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ballistic transport characteristic of ingaas quantum well surface channel MOSFET including effects of physical device parameter\",\"authors\":\"A. Shadman, Ehsanur Rahman, S. Biswas, Kanak Datta, Q. Khosru\",\"doi\":\"10.1109/ICECE.2014.7026914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, impact of device & process parameter variation on quantum ballistic Current-Voltage (I-V) characteristics of a surface channel, High K stack gate Quantum Well MOSFET is simulated. Physical device parameters like channel thickness, gate dielectric thickness and process parameters like doping density have direct effects on quantum ballistic current. We use mode space approach with NEGF formalism to simulate Current-Voltage (I-V) characteristics. Short Channel effects (SCE) are studied from the simulation for these variations. Observed effect is scaling dielectric & channel thickness results in better subthreshold slope & Drain induced barrier lowering at the cost of On-current. By increasing doping concentration, ballistic current can be improved. However with increasing doping density, SCE effects are compromised.\",\"PeriodicalId\":335492,\"journal\":{\"name\":\"8th International Conference on Electrical and Computer Engineering\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"8th International Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE.2014.7026914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2014.7026914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ballistic transport characteristic of ingaas quantum well surface channel MOSFET including effects of physical device parameter
In this paper, impact of device & process parameter variation on quantum ballistic Current-Voltage (I-V) characteristics of a surface channel, High K stack gate Quantum Well MOSFET is simulated. Physical device parameters like channel thickness, gate dielectric thickness and process parameters like doping density have direct effects on quantum ballistic current. We use mode space approach with NEGF formalism to simulate Current-Voltage (I-V) characteristics. Short Channel effects (SCE) are studied from the simulation for these variations. Observed effect is scaling dielectric & channel thickness results in better subthreshold slope & Drain induced barrier lowering at the cost of On-current. By increasing doping concentration, ballistic current can be improved. However with increasing doping density, SCE effects are compromised.