程序理解的符号简化模型

E. Laitila, S. Legrand
{"title":"程序理解的符号简化模型","authors":"E. Laitila, S. Legrand","doi":"10.1109/MICAI.2007.7","DOIUrl":null,"url":null,"abstract":"This article presents the main features of a novel construction, symbolic analysis, for automatic source code processing. The method is superior to the known methods, because it uses a semiotic, interpretative approach. Its most important processes and characteristics are considered here. We describe symbolic information retrieval and the process of analysis in which it can be used in order to obtain pragmatic information. This, in turn, is useful in understanding a current Java program version when developing a new version.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbolic Reductionist Model for Program Comprehension\",\"authors\":\"E. Laitila, S. Legrand\",\"doi\":\"10.1109/MICAI.2007.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the main features of a novel construction, symbolic analysis, for automatic source code processing. The method is superior to the known methods, because it uses a semiotic, interpretative approach. Its most important processes and characteristics are considered here. We describe symbolic information retrieval and the process of analysis in which it can be used in order to obtain pragmatic information. This, in turn, is useful in understanding a current Java program version when developing a new version.\",\"PeriodicalId\":296192,\"journal\":{\"name\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2007.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于自动源代码处理的新结构——符号分析的主要特点。该方法优于已知的方法,因为它使用了符号学和解释性的方法。这里讨论了其最重要的过程和特征。我们描述了符号信息的检索和分析过程,在这个过程中,符号信息可以被用来获取语用信息。这反过来又有助于在开发新版本时理解当前的Java程序版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symbolic Reductionist Model for Program Comprehension
This article presents the main features of a novel construction, symbolic analysis, for automatic source code processing. The method is superior to the known methods, because it uses a semiotic, interpretative approach. Its most important processes and characteristics are considered here. We describe symbolic information retrieval and the process of analysis in which it can be used in order to obtain pragmatic information. This, in turn, is useful in understanding a current Java program version when developing a new version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Tools to Time Series Forecasting Algorithm for Affective Pattern Recognition by Means of Use of First Initial Momentum Uncertain Reasoning in Multi-agent Ontology Mapping on the Semantic Web Segmentation and Extraction of Morphologic Features from Capillary Images An Intelligent Agent Using a Q-Learning Method to Allocate Replicated Data in a Distributed Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1