通过文本挖掘检测土耳其假新闻以保护品牌完整性

Ozge Doguc
{"title":"通过文本挖掘检测土耳其假新闻以保护品牌完整性","authors":"Ozge Doguc","doi":"10.54287/gujsa.1170640","DOIUrl":null,"url":null,"abstract":"Fake news has been in our lives as part of the media for years. With the recent spread of digital news platforms, it affects not only traditional media but also online media as well. Therefore, while companies seek to increase their own brand awareness, they should also protect their brands against fake news spread on social networks and traditional media. This study discusses a solution that accurately classifies the Turkish news published online as real and fake. For this purpose, a machine learning model is trained with tagged news. Initially, the headlines were analyzed within the scope of this study that are collected from Turkish online sources. As a next step, in addition to the headlines of these news, news contexts are also used in the analysis. Analysis are done with unigrams and bigrams. The results show 95% success for the headlines and 80% for the texts for correctly classifying the fake Turkish news articles. This is the first study in the literature that introduces an ML model that can accurately identify fake news in Turkish language.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Turkish Fake News Via Text Mining to Protect Brand Integrity\",\"authors\":\"Ozge Doguc\",\"doi\":\"10.54287/gujsa.1170640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news has been in our lives as part of the media for years. With the recent spread of digital news platforms, it affects not only traditional media but also online media as well. Therefore, while companies seek to increase their own brand awareness, they should also protect their brands against fake news spread on social networks and traditional media. This study discusses a solution that accurately classifies the Turkish news published online as real and fake. For this purpose, a machine learning model is trained with tagged news. Initially, the headlines were analyzed within the scope of this study that are collected from Turkish online sources. As a next step, in addition to the headlines of these news, news contexts are also used in the analysis. Analysis are done with unigrams and bigrams. The results show 95% success for the headlines and 80% for the texts for correctly classifying the fake Turkish news articles. This is the first study in the literature that introduces an ML model that can accurately identify fake news in Turkish language.\",\"PeriodicalId\":134301,\"journal\":{\"name\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54287/gujsa.1170640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1170640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为媒体的一部分,假新闻多年来一直存在于我们的生活中。随着近年来数字新闻平台的普及,它不仅影响了传统媒体,也影响了网络媒体。因此,企业在寻求提高自身品牌知名度的同时,也应该保护自己的品牌不受虚假新闻在社交网络和传统媒体上传播的影响。本研究讨论了一种解决方案,可以准确地将在线发布的土耳其新闻分类为真实和虚假。为此,机器学习模型使用标记新闻进行训练。最初,从土耳其在线资源收集的标题在本研究范围内进行了分析。下一步,除了这些新闻的标题,新闻语境也被用于分析。分析是用单字和双字完成的。结果显示95%的标题和80%的文本正确分类假土耳其新闻文章的成功率。这是文献中首次引入能够准确识别土耳其语假新闻的ML模型的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Turkish Fake News Via Text Mining to Protect Brand Integrity
Fake news has been in our lives as part of the media for years. With the recent spread of digital news platforms, it affects not only traditional media but also online media as well. Therefore, while companies seek to increase their own brand awareness, they should also protect their brands against fake news spread on social networks and traditional media. This study discusses a solution that accurately classifies the Turkish news published online as real and fake. For this purpose, a machine learning model is trained with tagged news. Initially, the headlines were analyzed within the scope of this study that are collected from Turkish online sources. As a next step, in addition to the headlines of these news, news contexts are also used in the analysis. Analysis are done with unigrams and bigrams. The results show 95% success for the headlines and 80% for the texts for correctly classifying the fake Turkish news articles. This is the first study in the literature that introduces an ML model that can accurately identify fake news in Turkish language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Model to Measure Digital Maturity Level in Electricity Distribution Companies On the voltage dependent series resistance, interface traps, and conduction mechanisms in the Al/(Ti-doped DLC)/p-Si/Au Schottky Diodes (SDs) Study on the optical and gas-sensing performance of Zn-doped CuO films Strontium Accumulations by Teucrium polium which Grows Naturally in Serpentine Soils Falling Body Motion in Time Scale Calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1