基于机器学习方法的森林管理多光谱调查资料处理

V. Mochalov, R. S. Khabarov
{"title":"基于机器学习方法的森林管理多光谱调查资料处理","authors":"V. Mochalov, R. S. Khabarov","doi":"10.1109/CTS53513.2021.9562930","DOIUrl":null,"url":null,"abstract":"The paper consider the machine learning methods application for processing multispectral space imagery materials. The forest management is carried out on the basis of a forest vegetation regular analysis. Identification of the forest vegetation type and its condition assessment are carried out by machine learning methods based on spectral-brightness features. The training and test samples choice is provided. We presents comparative analysis of machine learning methods for solving forest areas classification and clustering problems for further justified control action choice.","PeriodicalId":371882,"journal":{"name":"2021 IV International Conference on Control in Technical Systems (CTS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Processing of Multispectral Survey Materials based on Machine Learning Methods for Forest Management\",\"authors\":\"V. Mochalov, R. S. Khabarov\",\"doi\":\"10.1109/CTS53513.2021.9562930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper consider the machine learning methods application for processing multispectral space imagery materials. The forest management is carried out on the basis of a forest vegetation regular analysis. Identification of the forest vegetation type and its condition assessment are carried out by machine learning methods based on spectral-brightness features. The training and test samples choice is provided. We presents comparative analysis of machine learning methods for solving forest areas classification and clustering problems for further justified control action choice.\",\"PeriodicalId\":371882,\"journal\":{\"name\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTS53513.2021.9562930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IV International Conference on Control in Technical Systems (CTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS53513.2021.9562930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了机器学习方法在多光谱空间图像材料处理中的应用。森林经营是在森林植被规律分析的基础上进行的。采用基于光谱-亮度特征的机器学习方法对森林植被类型进行识别和状况评价。给出了训练和测试样本的选择。我们提出了解决森林区域分类和聚类问题的机器学习方法的比较分析,以进一步合理的控制行动选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing of Multispectral Survey Materials based on Machine Learning Methods for Forest Management
The paper consider the machine learning methods application for processing multispectral space imagery materials. The forest management is carried out on the basis of a forest vegetation regular analysis. Identification of the forest vegetation type and its condition assessment are carried out by machine learning methods based on spectral-brightness features. The training and test samples choice is provided. We presents comparative analysis of machine learning methods for solving forest areas classification and clustering problems for further justified control action choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of OPC UA Technology in the Study of Models of Control Objects Development of a Radio-Controlled Tentacle Robot Design Concept of Organizational Automated Information Control System based on System Algorithms Information Technology Computer System for Processing Industrial Information for Controlling the Production of Multi-Assortment Polymeric Films Distortion Level Analysis of a 2D Median Filter with a Weighted Central Element
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1