流处理的数据流编程

Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes
{"title":"流处理的数据流编程","authors":"Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes","doi":"10.1109/SBAC-PADW.2017.26","DOIUrl":null,"url":null,"abstract":"Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.","PeriodicalId":325990,"journal":{"name":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dataflow Programming for Stream Processing\",\"authors\":\"Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes\",\"doi\":\"10.1109/SBAC-PADW.2017.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.\",\"PeriodicalId\":325990,\"journal\":{\"name\":\"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PADW.2017.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PADW.2017.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

流处理应用程序具有高要求的性能要求,很难在现代多核架构(如gpu)上使用传统的并行模型来解决。另一方面,最近的数据流计算模型可以很自然地为大量应用程序利用并行性。这项工作提供了对现有Java数据流库的扩展。该库扩展实现了具有多个命令队列的高级结构,以便在gpu上实现内存操作和内核执行的叠加。实验结果表明,对于一些众所周知的流处理应用,如体射线投射、路径跟踪和索贝尔滤波,该算法可以实现显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dataflow Programming for Stream Processing
Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient In-Situ Quantum Computing Simulation of Shor's and Grover's Algorithms Assessing Sparse Triangular Linear System Solvers on GPUs Energy Consumption Improvement of Shared-Cache Multicore Clusters Based on Explicit Simultaneous Multithreading A Parallel Algorithm for Minimum Spanning Tree on GPU Dataflow Programming for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1