基于人工神经网络的电力变压器负荷估计

Laura Agudelo Zapata, Esteban Velilla Hernandez, J. López-Lezama
{"title":"基于人工神经网络的电力变压器负荷估计","authors":"Laura Agudelo Zapata, Esteban Velilla Hernandez, J. López-Lezama","doi":"10.1109/SIFAE.2012.6478901","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for load estimation of power transformers by means of an artificial neural network. To implement the proposed methodology the data of two power transformers, located in different places and with different operational conditions, were considered. Real data from a data base was provided by utility Interconexión Eléctrica S.A. (ISA). To forecast the load curves a neural network was trained using MATLAB, being able to fit a load curve with daily and weekly prediction times. The proposed method allows the estimation of load curve values in power transformers with an average percentage of relative error around 10%. The method described in this paper can be applied to other equipment with similar operating characteristics.","PeriodicalId":330140,"journal":{"name":"2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load estimation of power transformers using an artificial neural network\",\"authors\":\"Laura Agudelo Zapata, Esteban Velilla Hernandez, J. López-Lezama\",\"doi\":\"10.1109/SIFAE.2012.6478901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for load estimation of power transformers by means of an artificial neural network. To implement the proposed methodology the data of two power transformers, located in different places and with different operational conditions, were considered. Real data from a data base was provided by utility Interconexión Eléctrica S.A. (ISA). To forecast the load curves a neural network was trained using MATLAB, being able to fit a load curve with daily and weekly prediction times. The proposed method allows the estimation of load curve values in power transformers with an average percentage of relative error around 10%. The method described in this paper can be applied to other equipment with similar operating characteristics.\",\"PeriodicalId\":330140,\"journal\":{\"name\":\"2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIFAE.2012.6478901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIFAE.2012.6478901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于人工神经网络的电力变压器负荷估计方法。为了实现所提出的方法,考虑了位于不同地点和不同运行条件的两台电力变压器的数据。来自数据库的真实数据由实用程序Interconexión elsamicica S.A. (ISA)提供。为了预测负荷曲线,利用MATLAB对神经网络进行了训练,使其能够拟合每日和每周预测次数的负荷曲线。该方法可使电力变压器负荷曲线值的估计平均相对误差在10%左右。本文所述方法可应用于其他具有类似工作特性的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Load estimation of power transformers using an artificial neural network
This paper presents a methodology for load estimation of power transformers by means of an artificial neural network. To implement the proposed methodology the data of two power transformers, located in different places and with different operational conditions, were considered. Real data from a data base was provided by utility Interconexión Eléctrica S.A. (ISA). To forecast the load curves a neural network was trained using MATLAB, being able to fit a load curve with daily and weekly prediction times. The proposed method allows the estimation of load curve values in power transformers with an average percentage of relative error around 10%. The method described in this paper can be applied to other equipment with similar operating characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards optimal investment portfolio management wih hierarhical contol for energy markets A performance comparison for wind power integration into the grid system Effects of PV interconnection system to a circuit of a distribution network Characterization of power quality disturbances using digital filtering techniques Environmental Transmission Expansion Planning using non-linear programming and evolutionary techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1