{"title":"纳米细胞计:基于细胞大小筛选细胞","authors":"A. Carbonaro, L. Godley, L. Sohn","doi":"10.1109/MMB.2006.251529","DOIUrl":null,"url":null,"abstract":"Determination of cell size is crucial in many biomedical applications. Here, we show how resistive-pulse sensing and artificial pores can be used to detect and measure cell size accurately. Cell size is determined by measuring the change in resistance when an individual cell passes through the pore. As a proof-of-principle, we show that we are able to measure the change in size when cells undergo apoptosis","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The NanoCytometer: Screening Cells Based on Cell Size\",\"authors\":\"A. Carbonaro, L. Godley, L. Sohn\",\"doi\":\"10.1109/MMB.2006.251529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determination of cell size is crucial in many biomedical applications. Here, we show how resistive-pulse sensing and artificial pores can be used to detect and measure cell size accurately. Cell size is determined by measuring the change in resistance when an individual cell passes through the pore. As a proof-of-principle, we show that we are able to measure the change in size when cells undergo apoptosis\",\"PeriodicalId\":170356,\"journal\":{\"name\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMB.2006.251529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The NanoCytometer: Screening Cells Based on Cell Size
Determination of cell size is crucial in many biomedical applications. Here, we show how resistive-pulse sensing and artificial pores can be used to detect and measure cell size accurately. Cell size is determined by measuring the change in resistance when an individual cell passes through the pore. As a proof-of-principle, we show that we are able to measure the change in size when cells undergo apoptosis