{"title":"在金表面等离子体共振成像传感器上生长神经网络","authors":"D. Albutt, M. Alexander, Noah A. Russell","doi":"10.1109/FOI.2011.6154846","DOIUrl":null,"url":null,"abstract":"Surface plasmon resonance (SPR) is sensitive to changes of refractive index at a metal-dielectric interface. This technique has been applied to image networks of neurons non-invasively. The long term survival of active neural networks on SPR sensors requires optimisation of both the cell culture and the surface chemistry to ensure neurons adhere and grow uniformly.","PeriodicalId":240419,"journal":{"name":"2011 Functional Optical Imaging","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Growing neural networks on gold surface plasmon resonance imaging sensors\",\"authors\":\"D. Albutt, M. Alexander, Noah A. Russell\",\"doi\":\"10.1109/FOI.2011.6154846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface plasmon resonance (SPR) is sensitive to changes of refractive index at a metal-dielectric interface. This technique has been applied to image networks of neurons non-invasively. The long term survival of active neural networks on SPR sensors requires optimisation of both the cell culture and the surface chemistry to ensure neurons adhere and grow uniformly.\",\"PeriodicalId\":240419,\"journal\":{\"name\":\"2011 Functional Optical Imaging\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Functional Optical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOI.2011.6154846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Functional Optical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOI.2011.6154846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Growing neural networks on gold surface plasmon resonance imaging sensors
Surface plasmon resonance (SPR) is sensitive to changes of refractive index at a metal-dielectric interface. This technique has been applied to image networks of neurons non-invasively. The long term survival of active neural networks on SPR sensors requires optimisation of both the cell culture and the surface chemistry to ensure neurons adhere and grow uniformly.