基于数据源变化的稳健说话人聚类策略改进说话人划分

Kyu Jeong Han, Samuel Kim, Shrikanth S. Narayanan
{"title":"基于数据源变化的稳健说话人聚类策略改进说话人划分","authors":"Kyu Jeong Han, Samuel Kim, Shrikanth S. Narayanan","doi":"10.1109/ASRU.2007.4430121","DOIUrl":null,"url":null,"abstract":"Agglomerative hierarchical clustering (AHC) has been widely used in speaker diarization systems to classify speech segments in a given data source by speaker identity, but is known to be not robust to data source variation. In this paper, we identify one of the key potential sources of this variability that negatively affects clustering error rate (CER), namely short speech segments, and propose three solutions to tackle this issue. Through experiments on various meeting conversation excerpts, the proposed methods are shown to outperform simple AHC in terms of relative CER improvements in the range of 17-32%.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Robust speaker clustering strategies to data source variation for improved speaker diarization\",\"authors\":\"Kyu Jeong Han, Samuel Kim, Shrikanth S. Narayanan\",\"doi\":\"10.1109/ASRU.2007.4430121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agglomerative hierarchical clustering (AHC) has been widely used in speaker diarization systems to classify speech segments in a given data source by speaker identity, but is known to be not robust to data source variation. In this paper, we identify one of the key potential sources of this variability that negatively affects clustering error rate (CER), namely short speech segments, and propose three solutions to tackle this issue. Through experiments on various meeting conversation excerpts, the proposed methods are shown to outperform simple AHC in terms of relative CER improvements in the range of 17-32%.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

聚类分层聚类(AHC)已广泛应用于说话人分类系统中,根据说话人身份对给定数据源中的语音片段进行分类,但已知其对数据源变化的鲁棒性较差。在本文中,我们确定了对聚类错误率(CER)产生负面影响的这种可变性的一个关键潜在来源,即短语音片段,并提出了三个解决方案来解决这个问题。通过对各种会议对话摘录的实验,表明所提出的方法在相对CER改进方面优于简单AHC,改善幅度在17-32%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust speaker clustering strategies to data source variation for improved speaker diarization
Agglomerative hierarchical clustering (AHC) has been widely used in speaker diarization systems to classify speech segments in a given data source by speaker identity, but is known to be not robust to data source variation. In this paper, we identify one of the key potential sources of this variability that negatively affects clustering error rate (CER), namely short speech segments, and propose three solutions to tackle this issue. Through experiments on various meeting conversation excerpts, the proposed methods are shown to outperform simple AHC in terms of relative CER improvements in the range of 17-32%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1