{"title":"STTR","authors":"Zhuangdi Xu, Harshit Gupta, U. Ramachandran","doi":"10.1145/3210284.3210291","DOIUrl":null,"url":null,"abstract":"To fully exploit the capabilities of sensors in real life, especially cameras, smart camera surveillance requires the cooperation from both domain experts in computer vision and systems. Existing alert-based smart surveillance is only capable of tracking a limited number of suspicious objects, while in most real-life applications, we often do not know the perpetrator ahead of time for tracking their activities in advance. In this work, we propose a radically different approach to smart surveillance for vehicle tracking. Specifically, we explore a smart camera surveillance system aimed at tracking all vehicles in real time. The insight is not to store the raw videos, but to store the space-time trajectories of the vehicles. Since vehicle tracking is a continuous and geo-distributed task, we assume a geo-distributed Fog computing infrastructure as the execution platform for our system. To bound the storage space for storing the trajectories on each Fog node (serving the computational needs of a camera), we focus on the activities of vehicles in the vicinity of a given camera in a specific geographic region instead of the time dimension, and the fact that every vehicle has a \"finite\" lifetime. To bound the computational and network communication requirements for detection, re-identification, and inter-node communication, we propose novel techniques, namely, forward and backward propagation that reduces the latency for the operations and the communication overhead. STTR is a system for smart surveillance that we have built embodying these ideas. For evaluation, we develop a toolkit upon SUMO to emulate camera detections from traffic flow and adopt MaxiNet to emulate the fog computing infrastructure on Microsoft Azure.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"STTR\",\"authors\":\"Zhuangdi Xu, Harshit Gupta, U. Ramachandran\",\"doi\":\"10.1145/3210284.3210291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fully exploit the capabilities of sensors in real life, especially cameras, smart camera surveillance requires the cooperation from both domain experts in computer vision and systems. Existing alert-based smart surveillance is only capable of tracking a limited number of suspicious objects, while in most real-life applications, we often do not know the perpetrator ahead of time for tracking their activities in advance. In this work, we propose a radically different approach to smart surveillance for vehicle tracking. Specifically, we explore a smart camera surveillance system aimed at tracking all vehicles in real time. The insight is not to store the raw videos, but to store the space-time trajectories of the vehicles. Since vehicle tracking is a continuous and geo-distributed task, we assume a geo-distributed Fog computing infrastructure as the execution platform for our system. To bound the storage space for storing the trajectories on each Fog node (serving the computational needs of a camera), we focus on the activities of vehicles in the vicinity of a given camera in a specific geographic region instead of the time dimension, and the fact that every vehicle has a \\\"finite\\\" lifetime. To bound the computational and network communication requirements for detection, re-identification, and inter-node communication, we propose novel techniques, namely, forward and backward propagation that reduces the latency for the operations and the communication overhead. STTR is a system for smart surveillance that we have built embodying these ideas. For evaluation, we develop a toolkit upon SUMO to emulate camera detections from traffic flow and adopt MaxiNet to emulate the fog computing infrastructure on Microsoft Azure.\",\"PeriodicalId\":412438,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210284.3210291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3210291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STTR
To fully exploit the capabilities of sensors in real life, especially cameras, smart camera surveillance requires the cooperation from both domain experts in computer vision and systems. Existing alert-based smart surveillance is only capable of tracking a limited number of suspicious objects, while in most real-life applications, we often do not know the perpetrator ahead of time for tracking their activities in advance. In this work, we propose a radically different approach to smart surveillance for vehicle tracking. Specifically, we explore a smart camera surveillance system aimed at tracking all vehicles in real time. The insight is not to store the raw videos, but to store the space-time trajectories of the vehicles. Since vehicle tracking is a continuous and geo-distributed task, we assume a geo-distributed Fog computing infrastructure as the execution platform for our system. To bound the storage space for storing the trajectories on each Fog node (serving the computational needs of a camera), we focus on the activities of vehicles in the vicinity of a given camera in a specific geographic region instead of the time dimension, and the fact that every vehicle has a "finite" lifetime. To bound the computational and network communication requirements for detection, re-identification, and inter-node communication, we propose novel techniques, namely, forward and backward propagation that reduces the latency for the operations and the communication overhead. STTR is a system for smart surveillance that we have built embodying these ideas. For evaluation, we develop a toolkit upon SUMO to emulate camera detections from traffic flow and adopt MaxiNet to emulate the fog computing infrastructure on Microsoft Azure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid MtDetector Predicting Destinations by Nearest Neighbor Search on Training Vessel Routes Venilia, On-line Learning and Prediction of Vessel Destination Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1