在降噪的正则化框架中控制权衡特性

Xugang Lu, M. Unoki, Shigeki Matsuda, Chiori Hori, H. Kashioka
{"title":"在降噪的正则化框架中控制权衡特性","authors":"Xugang Lu, M. Unoki, Shigeki Matsuda, Chiori Hori, H. Kashioka","doi":"10.1109/ISCSLP.2012.6423500","DOIUrl":null,"url":null,"abstract":"The tradeoff between noise reduction and speech distortion is a key concern in designing noise reduction algorithms. We have proposed a regularization framework for noise reduction with the consideration of the tradeoff problem. We regard speech estimation as a functional approximation problem in a reproducing kernel Hilbert space (RKHS). In the estimation, the objective function is formulated to find an approximation function that gives a good tradeoff between the approximation accuracy and complexity of the function. By using a regularization method, the approximation function can be estimated from noisy observations. In this paper, we further provided a theoretical analysis of the tradeoff property of the framework in noise reduction. We applied the framework for speech enhancement experiments in real applications. Compared with several classical noise reduction methods, the proposed framework showed promising advantages.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling the tradeoff property in a regularization framework for noise reduction\",\"authors\":\"Xugang Lu, M. Unoki, Shigeki Matsuda, Chiori Hori, H. Kashioka\",\"doi\":\"10.1109/ISCSLP.2012.6423500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tradeoff between noise reduction and speech distortion is a key concern in designing noise reduction algorithms. We have proposed a regularization framework for noise reduction with the consideration of the tradeoff problem. We regard speech estimation as a functional approximation problem in a reproducing kernel Hilbert space (RKHS). In the estimation, the objective function is formulated to find an approximation function that gives a good tradeoff between the approximation accuracy and complexity of the function. By using a regularization method, the approximation function can be estimated from noisy observations. In this paper, we further provided a theoretical analysis of the tradeoff property of the framework in noise reduction. We applied the framework for speech enhancement experiments in real applications. Compared with several classical noise reduction methods, the proposed framework showed promising advantages.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在降噪算法设计中,降噪与语音失真之间的权衡是一个关键问题。我们提出了一个考虑权衡问题的降噪正则化框架。我们把语音估计看作是再现核希尔伯特空间(RKHS)中的一个泛函逼近问题。在估计中,制定目标函数以找到一个在函数的近似精度和复杂度之间取得良好平衡的近似函数。通过正则化方法,可以从噪声观测中估计出近似函数。本文进一步从理论上分析了该框架在降噪中的权衡特性。我们将该框架应用于实际应用中的语音增强实验。通过与几种经典降噪方法的比较,表明了该框架的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling the tradeoff property in a regularization framework for noise reduction
The tradeoff between noise reduction and speech distortion is a key concern in designing noise reduction algorithms. We have proposed a regularization framework for noise reduction with the consideration of the tradeoff problem. We regard speech estimation as a functional approximation problem in a reproducing kernel Hilbert space (RKHS). In the estimation, the objective function is formulated to find an approximation function that gives a good tradeoff between the approximation accuracy and complexity of the function. By using a regularization method, the approximation function can be estimated from noisy observations. In this paper, we further provided a theoretical analysis of the tradeoff property of the framework in noise reduction. We applied the framework for speech enhancement experiments in real applications. Compared with several classical noise reduction methods, the proposed framework showed promising advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise-robust whispered speech recognition using a non-audible-murmur microphone with VTS compensation Effects of excitation spread on the intelligibility of Mandarin speech in cochlear implant simulations A comparative study of fMPE and RDLT approaches to LVCSR Keyword-specific normalization based keyword spotting for spontaneous speech A unified trajectory tiling approach to high quality TTS and cross-lingual voice transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1