BDT3V -一种考虑3V的大数据测试技术

Avi Bhardwaj, Rashbir Singh, V. Deep, Purushottam Sharma
{"title":"BDT3V -一种考虑3V的大数据测试技术","authors":"Avi Bhardwaj, Rashbir Singh, V. Deep, Purushottam Sharma","doi":"10.1109/ICGCIOT.2018.8752996","DOIUrl":null,"url":null,"abstract":"With sudden increase in Big Data in last few decades, innovative research and development of technologies to analyze Big Data are going across the world resulting in various tools like Hadoop, Hive, Spark ,Pig, Mongodb, Flume, Oozieetc capable of analyzing data of different varieties, velocities, volumes and veracities. But with so many tools it becomes important to test the efficiency (cost and performance) and capacity of these tools with various kinds of data sets. This paper discuss an approach to test these tools in terms of their capacity and efficiency for different data sets with different 3 Vs.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BDT3V — A Technique for Big Data Testing considering 3V’s\",\"authors\":\"Avi Bhardwaj, Rashbir Singh, V. Deep, Purushottam Sharma\",\"doi\":\"10.1109/ICGCIOT.2018.8752996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With sudden increase in Big Data in last few decades, innovative research and development of technologies to analyze Big Data are going across the world resulting in various tools like Hadoop, Hive, Spark ,Pig, Mongodb, Flume, Oozieetc capable of analyzing data of different varieties, velocities, volumes and veracities. But with so many tools it becomes important to test the efficiency (cost and performance) and capacity of these tools with various kinds of data sets. This paper discuss an approach to test these tools in terms of their capacity and efficiency for different data sets with different 3 Vs.\",\"PeriodicalId\":269682,\"journal\":{\"name\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGCIOT.2018.8752996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8752996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近几十年来,随着大数据的迅猛发展,全球范围内对大数据分析技术的创新研究和开发层出不穷,出现了Hadoop、Hive、Spark、Pig、Mongodb、Flume、ooziee等各种工具,能够分析不同种类、速度、数量和准确性的数据。但是有了这么多的工具,用各种各样的数据集测试这些工具的效率(成本和性能)和容量变得很重要。本文讨论了一种方法来测试这些工具在不同数据集上的容量和效率,这些数据集具有不同的3v。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BDT3V — A Technique for Big Data Testing considering 3V’s
With sudden increase in Big Data in last few decades, innovative research and development of technologies to analyze Big Data are going across the world resulting in various tools like Hadoop, Hive, Spark ,Pig, Mongodb, Flume, Oozieetc capable of analyzing data of different varieties, velocities, volumes and veracities. But with so many tools it becomes important to test the efficiency (cost and performance) and capacity of these tools with various kinds of data sets. This paper discuss an approach to test these tools in terms of their capacity and efficiency for different data sets with different 3 Vs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Holistic Approach For Patient Health Care Monitoring System Through IoT Pomegranate Diseases and Detection using Sensors: A Review Energy Efficient Optimal Path based coded transmission for multi-sink and multi-hop WSN Iot Based Smart Shopping Mall Visual screens in Canteens providing Real Time information of Food Wastage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1