{"title":"为共享数据结构自动生成细粒度锁","authors":"Haiyang Liu, Tingting Hu, Z. Qiu","doi":"10.1109/TASE.2017.8285633","DOIUrl":null,"url":null,"abstract":"Correct mutual-exclusion is one of the key challenges in concurrent programming. Although the fine-grained locking schema can be more efficient compared with the coarse-grained techniques, it is tough to use, as well as error-prone. Here we present a static approach, based on program analysis, to automatically add fine-grained locking primitives to data structures implemented as classes. For tree-like structures, the modified class definitions are guaranteed to be thread-safe. Experiments show that the approach can successfully deal with programs which are challenging to be handled manually, and it works efficiently.","PeriodicalId":221968,"journal":{"name":"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic fine-grained locking generation for shared data structures\",\"authors\":\"Haiyang Liu, Tingting Hu, Z. Qiu\",\"doi\":\"10.1109/TASE.2017.8285633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct mutual-exclusion is one of the key challenges in concurrent programming. Although the fine-grained locking schema can be more efficient compared with the coarse-grained techniques, it is tough to use, as well as error-prone. Here we present a static approach, based on program analysis, to automatically add fine-grained locking primitives to data structures implemented as classes. For tree-like structures, the modified class definitions are guaranteed to be thread-safe. Experiments show that the approach can successfully deal with programs which are challenging to be handled manually, and it works efficiently.\",\"PeriodicalId\":221968,\"journal\":{\"name\":\"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASE.2017.8285633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2017.8285633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic fine-grained locking generation for shared data structures
Correct mutual-exclusion is one of the key challenges in concurrent programming. Although the fine-grained locking schema can be more efficient compared with the coarse-grained techniques, it is tough to use, as well as error-prone. Here we present a static approach, based on program analysis, to automatically add fine-grained locking primitives to data structures implemented as classes. For tree-like structures, the modified class definitions are guaranteed to be thread-safe. Experiments show that the approach can successfully deal with programs which are challenging to be handled manually, and it works efficiently.