{"title":"坚固紧凑的金属化毛细管拉曼探针,用于恶劣环境下的材料识别","authors":"B. Bortnik, J. P. Kirby, J. Lambert","doi":"10.1109/AERO.2010.5446979","DOIUrl":null,"url":null,"abstract":"In this paper we present the use of metallic waveguides as optical Raman probes for identification of various organic and inorganic compounds. In contrast to silica waveguides, metallic capillaries possess significant space savings and robust mechanical properties allowing the employment of such probes in hostile atmosphere and space environments. Furthermore, recent fabrication advances have produced metallic waveguides with low loss in the ultraviolet region, allowing the use of ultraviolet light as an excitation source in Raman spectroscopy, thereby decreasing background noise from sample and instrument fluorescence. Accordingly, we will present encouraging experimental results on the implementation of Raman spectroscopy using these metal capillaries and discuss their potential application to future space missions. This work is being developed as a NASA Planetary Instrument Definition and Development (PIDDP) task.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rugged compact metallized capillary Raman probe for material identification in hostile environments\",\"authors\":\"B. Bortnik, J. P. Kirby, J. Lambert\",\"doi\":\"10.1109/AERO.2010.5446979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the use of metallic waveguides as optical Raman probes for identification of various organic and inorganic compounds. In contrast to silica waveguides, metallic capillaries possess significant space savings and robust mechanical properties allowing the employment of such probes in hostile atmosphere and space environments. Furthermore, recent fabrication advances have produced metallic waveguides with low loss in the ultraviolet region, allowing the use of ultraviolet light as an excitation source in Raman spectroscopy, thereby decreasing background noise from sample and instrument fluorescence. Accordingly, we will present encouraging experimental results on the implementation of Raman spectroscopy using these metal capillaries and discuss their potential application to future space missions. This work is being developed as a NASA Planetary Instrument Definition and Development (PIDDP) task.\",\"PeriodicalId\":378029,\"journal\":{\"name\":\"2010 IEEE Aerospace Conference\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2010.5446979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rugged compact metallized capillary Raman probe for material identification in hostile environments
In this paper we present the use of metallic waveguides as optical Raman probes for identification of various organic and inorganic compounds. In contrast to silica waveguides, metallic capillaries possess significant space savings and robust mechanical properties allowing the employment of such probes in hostile atmosphere and space environments. Furthermore, recent fabrication advances have produced metallic waveguides with low loss in the ultraviolet region, allowing the use of ultraviolet light as an excitation source in Raman spectroscopy, thereby decreasing background noise from sample and instrument fluorescence. Accordingly, we will present encouraging experimental results on the implementation of Raman spectroscopy using these metal capillaries and discuss their potential application to future space missions. This work is being developed as a NASA Planetary Instrument Definition and Development (PIDDP) task.