{"title":"基于片上网络的性能和保护","authors":"S. Mallon, V. Gramoli, Guillaume Jourjon","doi":"10.1145/3173162.3173209","DOIUrl":null,"url":null,"abstract":"A long body of research work has led to the conjecture that highly efficient IO processing at user-level would necessarily violate protection. In this paper, we debunk this myth by introducing DLibOS a new paradigm that consists of distributing a library OS on specialized cores to achieve performance and protection at the user-level. Its main novelty consists of leveraging network-on-chip to allow hardware message passing, rather than context switches, for communication between different address spaces. To demonstrate the feasibility of our approach, we implement a driver and a network stack at user-level on a Tilera many-core machine. We define a novel asynchronous socket interface and partition the memory such that the reception, the transmission and the application modify isolated regions. Our high performance results of 4.2 and 3.1 million requests per second obtained on a webserver and the Memcached applications, respectively, confirms the relevance of our design decisions. Finally, we compare DLibOS against a non-protected user-level network stack and show that protection comes at a negligible cost.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DLibOS: Performance and Protection with a Network-on-Chip\",\"authors\":\"S. Mallon, V. Gramoli, Guillaume Jourjon\",\"doi\":\"10.1145/3173162.3173209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A long body of research work has led to the conjecture that highly efficient IO processing at user-level would necessarily violate protection. In this paper, we debunk this myth by introducing DLibOS a new paradigm that consists of distributing a library OS on specialized cores to achieve performance and protection at the user-level. Its main novelty consists of leveraging network-on-chip to allow hardware message passing, rather than context switches, for communication between different address spaces. To demonstrate the feasibility of our approach, we implement a driver and a network stack at user-level on a Tilera many-core machine. We define a novel asynchronous socket interface and partition the memory such that the reception, the transmission and the application modify isolated regions. Our high performance results of 4.2 and 3.1 million requests per second obtained on a webserver and the Memcached applications, respectively, confirms the relevance of our design decisions. Finally, we compare DLibOS against a non-protected user-level network stack and show that protection comes at a negligible cost.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3173209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

长期的研究工作导致了这样的猜想:用户级的高效IO处理必然会违反保护。在本文中,我们通过引入dlibo来揭穿这个神话,dlibo是一种新的范例,它包括在专门的核心上分发库操作系统,以实现用户级的性能和保护。它的主要新颖之处在于利用片上网络来允许硬件消息传递,而不是上下文切换,以便在不同地址空间之间进行通信。为了演示我们方法的可行性,我们在Tilera多核机器上实现了用户级的驱动程序和网络堆栈。我们定义了一种新的异步套接字接口,并对内存进行了分区,使得接收、传输和应用程序修改了隔离的区域。我们在web服务器和Memcached应用程序上分别获得了每秒420万和310万请求的高性能结果,这证实了我们设计决策的相关性。最后,我们将dlibo与未受保护的用户级网络堆栈进行比较,并表明保护的成本可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DLibOS: Performance and Protection with a Network-on-Chip
A long body of research work has led to the conjecture that highly efficient IO processing at user-level would necessarily violate protection. In this paper, we debunk this myth by introducing DLibOS a new paradigm that consists of distributing a library OS on specialized cores to achieve performance and protection at the user-level. Its main novelty consists of leveraging network-on-chip to allow hardware message passing, rather than context switches, for communication between different address spaces. To demonstrate the feasibility of our approach, we implement a driver and a network stack at user-level on a Tilera many-core machine. We define a novel asynchronous socket interface and partition the memory such that the reception, the transmission and the application modify isolated regions. Our high performance results of 4.2 and 3.1 million requests per second obtained on a webserver and the Memcached applications, respectively, confirms the relevance of our design decisions. Finally, we compare DLibOS against a non-protected user-level network stack and show that protection comes at a negligible cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CALOREE: Learning Control for Predictable Latency and Low Energy Session details: Session 7B: Memory 2 Session details: Session 4A: Memory 1 BranchScope: A New Side-Channel Attack on Directional Branch Predictor Devirtualizing Memory in Heterogeneous Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1