一种改进的横向互联协同自组织地图学习算法

Bai-ling Zhang, Tom Gedeon
{"title":"一种改进的横向互联协同自组织地图学习算法","authors":"Bai-ling Zhang, Tom Gedeon","doi":"10.1109/ICONIP.1999.843996","DOIUrl":null,"url":null,"abstract":"LISSOM (Laterally Interconnected Synergetically Self-Organizing Map) is a biologically motivated self-organizing neural network for the simultaneous development of topographic maps and lateral interactions in the visual cortex. However, the simple Hebbian mechanism for afferent connections requires a redundant dimension to be added to the input, and normalization is necessary. Another shortcoming of LISSOM is that several parameters must be chosen before it can be used as a model of topographic map formation. To solve these problems, we propose to apply the least mean-square error reconstruction (LMSER) learning rule as an alternative to the simple Hebbian rule for the afferent connections. Experiments demonstrate the essential topographic map properties from the improved LISSOM model.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved learning algorithm for laterally interconnected synergetically self-organizing map\",\"authors\":\"Bai-ling Zhang, Tom Gedeon\",\"doi\":\"10.1109/ICONIP.1999.843996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LISSOM (Laterally Interconnected Synergetically Self-Organizing Map) is a biologically motivated self-organizing neural network for the simultaneous development of topographic maps and lateral interactions in the visual cortex. However, the simple Hebbian mechanism for afferent connections requires a redundant dimension to be added to the input, and normalization is necessary. Another shortcoming of LISSOM is that several parameters must be chosen before it can be used as a model of topographic map formation. To solve these problems, we propose to apply the least mean-square error reconstruction (LMSER) learning rule as an alternative to the simple Hebbian rule for the afferent connections. Experiments demonstrate the essential topographic map properties from the improved LISSOM model.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.843996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.843996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

LISSOM (lateral Interconnected synergy Self-Organizing Map)是一种具有生物动机的自组织神经网络,用于同时发展地形图和视觉皮层中的横向相互作用。然而,传入连接的简单Hebbian机制需要向输入添加一个冗余维度,并且需要规范化。LISSOM的另一个缺点是必须选择几个参数才能用作地形图形成的模型。为了解决这些问题,我们提出将最小均方误差重建(LMSER)学习规则作为传入连接的简单Hebbian规则的替代方法。实验验证了改进LISSOM模型的基本地形图属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved learning algorithm for laterally interconnected synergetically self-organizing map
LISSOM (Laterally Interconnected Synergetically Self-Organizing Map) is a biologically motivated self-organizing neural network for the simultaneous development of topographic maps and lateral interactions in the visual cortex. However, the simple Hebbian mechanism for afferent connections requires a redundant dimension to be added to the input, and normalization is necessary. Another shortcoming of LISSOM is that several parameters must be chosen before it can be used as a model of topographic map formation. To solve these problems, we propose to apply the least mean-square error reconstruction (LMSER) learning rule as an alternative to the simple Hebbian rule for the afferent connections. Experiments demonstrate the essential topographic map properties from the improved LISSOM model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1