基于两层k均值分类器的运动处方配方方案

Shyr-Shen Yu, C. Chiu, Chia-Chi Liu, Y. Chan, M. Tsai
{"title":"基于两层k均值分类器的运动处方配方方案","authors":"Shyr-Shen Yu, C. Chiu, Chia-Chi Liu, Y. Chan, M. Tsai","doi":"10.1109/INDCOMP.2014.7011760","DOIUrl":null,"url":null,"abstract":"An excersice prescription is a professionally designed excersice plan for improving one's health according to the results of his health-related physical fitness (HRPF) tests. Traditionally, an excersice prescription is formulated by manually checking the norm-referenced chart of HRPF; however, it is time consuming and a highly specialized and experienced expert on health-related physical fitness testing is needed to formulate this prescription. To solve above problems, it is necessary to develope an automatic excersice prescription formulating scheme for categorizing the measured data of HRPF tests and then assign the best appopriate excersice prescription for each class. In this study, a two-layer classifier, integrating the techiques of K-means clustering algorithm and genetic algorithm, is hence propsed to classify the measured data of HRPF tests and provide the best appopriate excersice prescription for each class. When the data variance within one class is very large, the centroid of the class cannot effectively represent each datum in the class. The two-layer classifier therefore partitions each class into several clusters (subclasses) and then classifiy the measured data of HRPF tests into clusters. In this study, a genetic algorithm is provided to determine the number of clusters, which each class should be separated into, and the best suitable values of the parameters used in the two-layer classifier. The experimental results demonstrate that the two-layer classifier can effectively and efficiently classify the measured data of HRPF tests and design excersice plan.","PeriodicalId":246465,"journal":{"name":"2014 IEEE International Symposium on Independent Computing (ISIC)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exercise prescription formulating scheme based on a two-layer K-means classifier\",\"authors\":\"Shyr-Shen Yu, C. Chiu, Chia-Chi Liu, Y. Chan, M. Tsai\",\"doi\":\"10.1109/INDCOMP.2014.7011760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An excersice prescription is a professionally designed excersice plan for improving one's health according to the results of his health-related physical fitness (HRPF) tests. Traditionally, an excersice prescription is formulated by manually checking the norm-referenced chart of HRPF; however, it is time consuming and a highly specialized and experienced expert on health-related physical fitness testing is needed to formulate this prescription. To solve above problems, it is necessary to develope an automatic excersice prescription formulating scheme for categorizing the measured data of HRPF tests and then assign the best appopriate excersice prescription for each class. In this study, a two-layer classifier, integrating the techiques of K-means clustering algorithm and genetic algorithm, is hence propsed to classify the measured data of HRPF tests and provide the best appopriate excersice prescription for each class. When the data variance within one class is very large, the centroid of the class cannot effectively represent each datum in the class. The two-layer classifier therefore partitions each class into several clusters (subclasses) and then classifiy the measured data of HRPF tests into clusters. In this study, a genetic algorithm is provided to determine the number of clusters, which each class should be separated into, and the best suitable values of the parameters used in the two-layer classifier. The experimental results demonstrate that the two-layer classifier can effectively and efficiently classify the measured data of HRPF tests and design excersice plan.\",\"PeriodicalId\":246465,\"journal\":{\"name\":\"2014 IEEE International Symposium on Independent Computing (ISIC)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Independent Computing (ISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCOMP.2014.7011760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Independent Computing (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCOMP.2014.7011760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

运动处方是一种专业设计的运动计划,根据他的健康相关体能(HRPF)测试的结果来改善一个人的健康。传统上,运动处方是通过人工检查HRPF规范参考表来制定的;然而,这是耗时的,需要一个高度专业化和经验丰富的健康体质测试专家来制定这个处方。为了解决上述问题,有必要开发一种运动处方自动制定方案,对HRPF测试的测量数据进行分类,然后为每个类别分配最合适的运动处方。因此,本研究提出了一种结合k均值聚类算法和遗传算法的两层分类器,对HRPF测试的测量数据进行分类,并为每一类提供最合适的锻炼处方。当一个类内的数据方差很大时,该类的质心不能有效地表示该类中的每个基准点。因此,双层分类器将每个类划分为几个簇(子类),然后将HRPF测试的测量数据分类到簇中。在本研究中,提供了一种遗传算法来确定每个类应该分成的聚类数量,以及两层分类器中使用的参数的最合适值。实验结果表明,该双层分类器能有效地对HRPF测试的测量数据进行分类,并能有效地设计运动方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exercise prescription formulating scheme based on a two-layer K-means classifier
An excersice prescription is a professionally designed excersice plan for improving one's health according to the results of his health-related physical fitness (HRPF) tests. Traditionally, an excersice prescription is formulated by manually checking the norm-referenced chart of HRPF; however, it is time consuming and a highly specialized and experienced expert on health-related physical fitness testing is needed to formulate this prescription. To solve above problems, it is necessary to develope an automatic excersice prescription formulating scheme for categorizing the measured data of HRPF tests and then assign the best appopriate excersice prescription for each class. In this study, a two-layer classifier, integrating the techiques of K-means clustering algorithm and genetic algorithm, is hence propsed to classify the measured data of HRPF tests and provide the best appopriate excersice prescription for each class. When the data variance within one class is very large, the centroid of the class cannot effectively represent each datum in the class. The two-layer classifier therefore partitions each class into several clusters (subclasses) and then classifiy the measured data of HRPF tests into clusters. In this study, a genetic algorithm is provided to determine the number of clusters, which each class should be separated into, and the best suitable values of the parameters used in the two-layer classifier. The experimental results demonstrate that the two-layer classifier can effectively and efficiently classify the measured data of HRPF tests and design excersice plan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological approaches to locative prepositions The development of a multi-piecewise-based thinning description method Improving performance of decision boundary making with support vector machine based outlier detection A new steganography protocol for improving security of cloud storage services Verification of an image morphing based technology for improving the security in cloud storage services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1