Voxob Rustamovich Rasulov, R. Rasulov, Iqboljon Mamirjonovich Eshboltayev, R. R. Sultanov
{"title":"多层半导体的亚势垒和势垒以上电子传输","authors":"Voxob Rustamovich Rasulov, R. Rasulov, Iqboljon Mamirjonovich Eshboltayev, R. R. Sultanov","doi":"10.11648/J.AJPA.20200804.12","DOIUrl":null,"url":null,"abstract":"The transparency coefficients of the semiconductor structure consisting of alternating asymmetric potential barriers and wells are calculated, where taken into account the Bastard condition. It is shown that both in the above-barrier and over barrier passage of electrons, tunneling oscillations arise. The amplitude, in this case, is determined not only by the values of the wave vectors, but from the values of the effective masses of the current carriers. This oscillation does not disappear even in symmetric structures if they have a difference in the effective masses of current carriers located in two neighboring regions. In symmetrical structures, an oscillation of the coefficient of the above-barrier passage of a particle depending on its energy should be observed without taking into account the Bastard condition. Calculations show that for equal values of the width of the well and the potential barrier, as well as jumps in the potential of the barrier or well, the amplitude of the oscillations of the coefficient of over-barrier passage of particles is greater than the coefficient of passage above the well. In the case of an asymmetric structure, these considerations remain valed, but the physical nature of the parameters, for example, the number of oscillations, reflection and transmission coefficients, strongly depends on the ratio of the effective masses of electrons in neighboring layers and from the ratio of the height of the left and right potential barrier (regarding to the well). In an asymmetric (and in a symmetric, but with different effective masses of electrons in different layers) semiconductor structure, oscillation should be observed depending on the coefficient of transmission through the potential barrier on the energy of electron. This oscillation is caused by the interference of waves going to the barrier and reflected from the potential barrier. Such an interference phenomenon in the structure does not disappear even in a symmetric structure due to the difference in the effective masses of electrons located in different regions of the structure. The electronic states of a multilayer semiconductor structure consisting of alternating potential wells and barriers are analyzed.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-barrier and Above-barrier Electron Transport Through Multilayer Semiconductors\",\"authors\":\"Voxob Rustamovich Rasulov, R. Rasulov, Iqboljon Mamirjonovich Eshboltayev, R. R. Sultanov\",\"doi\":\"10.11648/J.AJPA.20200804.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transparency coefficients of the semiconductor structure consisting of alternating asymmetric potential barriers and wells are calculated, where taken into account the Bastard condition. It is shown that both in the above-barrier and over barrier passage of electrons, tunneling oscillations arise. The amplitude, in this case, is determined not only by the values of the wave vectors, but from the values of the effective masses of the current carriers. This oscillation does not disappear even in symmetric structures if they have a difference in the effective masses of current carriers located in two neighboring regions. In symmetrical structures, an oscillation of the coefficient of the above-barrier passage of a particle depending on its energy should be observed without taking into account the Bastard condition. Calculations show that for equal values of the width of the well and the potential barrier, as well as jumps in the potential of the barrier or well, the amplitude of the oscillations of the coefficient of over-barrier passage of particles is greater than the coefficient of passage above the well. In the case of an asymmetric structure, these considerations remain valed, but the physical nature of the parameters, for example, the number of oscillations, reflection and transmission coefficients, strongly depends on the ratio of the effective masses of electrons in neighboring layers and from the ratio of the height of the left and right potential barrier (regarding to the well). In an asymmetric (and in a symmetric, but with different effective masses of electrons in different layers) semiconductor structure, oscillation should be observed depending on the coefficient of transmission through the potential barrier on the energy of electron. This oscillation is caused by the interference of waves going to the barrier and reflected from the potential barrier. Such an interference phenomenon in the structure does not disappear even in a symmetric structure due to the difference in the effective masses of electrons located in different regions of the structure. The electronic states of a multilayer semiconductor structure consisting of alternating potential wells and barriers are analyzed.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20200804.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20200804.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-barrier and Above-barrier Electron Transport Through Multilayer Semiconductors
The transparency coefficients of the semiconductor structure consisting of alternating asymmetric potential barriers and wells are calculated, where taken into account the Bastard condition. It is shown that both in the above-barrier and over barrier passage of electrons, tunneling oscillations arise. The amplitude, in this case, is determined not only by the values of the wave vectors, but from the values of the effective masses of the current carriers. This oscillation does not disappear even in symmetric structures if they have a difference in the effective masses of current carriers located in two neighboring regions. In symmetrical structures, an oscillation of the coefficient of the above-barrier passage of a particle depending on its energy should be observed without taking into account the Bastard condition. Calculations show that for equal values of the width of the well and the potential barrier, as well as jumps in the potential of the barrier or well, the amplitude of the oscillations of the coefficient of over-barrier passage of particles is greater than the coefficient of passage above the well. In the case of an asymmetric structure, these considerations remain valed, but the physical nature of the parameters, for example, the number of oscillations, reflection and transmission coefficients, strongly depends on the ratio of the effective masses of electrons in neighboring layers and from the ratio of the height of the left and right potential barrier (regarding to the well). In an asymmetric (and in a symmetric, but with different effective masses of electrons in different layers) semiconductor structure, oscillation should be observed depending on the coefficient of transmission through the potential barrier on the energy of electron. This oscillation is caused by the interference of waves going to the barrier and reflected from the potential barrier. Such an interference phenomenon in the structure does not disappear even in a symmetric structure due to the difference in the effective masses of electrons located in different regions of the structure. The electronic states of a multilayer semiconductor structure consisting of alternating potential wells and barriers are analyzed.