基于嵌入式ADMM技术的分布式扩展目标跟踪滤波器

Zhifei Li, Hongyan Wang, Shi Yan, Hongxia Zou, Mingyang Du
{"title":"基于嵌入式ADMM技术的分布式扩展目标跟踪滤波器","authors":"Zhifei Li, Hongyan Wang, Shi Yan, Hongxia Zou, Mingyang Du","doi":"10.1109/MFI55806.2022.9913876","DOIUrl":null,"url":null,"abstract":"This work is concerned with the distributed extended object tracking system over a realistic network, where all nodes are required to achieve consensus on both the extent and kinematics. To this end, we first exploit an aligned velocity model to establish a tight relation between the orientation and velocity vector. Then, we use the moment-matching method to give two separate models to match the information filter (IF) framework. Later, we resort to the two models to propose a centralized IF and extend it to the distributed scenario based on the embedded alternating direction method of multipliers (ADMM) technique. To keep an agreement between nodes, an optimization function is given, followed by a consensus-based constraint. Numerical simulation together with theoretical analysis verifies the convergence and consensus of the proposed filter.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Extended Object Tracking Filter Through Embedded ADMM Technique\",\"authors\":\"Zhifei Li, Hongyan Wang, Shi Yan, Hongxia Zou, Mingyang Du\",\"doi\":\"10.1109/MFI55806.2022.9913876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is concerned with the distributed extended object tracking system over a realistic network, where all nodes are required to achieve consensus on both the extent and kinematics. To this end, we first exploit an aligned velocity model to establish a tight relation between the orientation and velocity vector. Then, we use the moment-matching method to give two separate models to match the information filter (IF) framework. Later, we resort to the two models to propose a centralized IF and extend it to the distributed scenario based on the embedded alternating direction method of multipliers (ADMM) technique. To keep an agreement between nodes, an optimization function is given, followed by a consensus-based constraint. Numerical simulation together with theoretical analysis verifies the convergence and consensus of the proposed filter.\",\"PeriodicalId\":344737,\"journal\":{\"name\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI55806.2022.9913876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了现实网络上的分布式扩展目标跟踪系统,要求所有节点在范围和运动学上达成一致。为此,我们首先利用对准速度模型来建立方向和速度矢量之间的紧密关系。然后,我们使用矩匹配方法给出两个独立的模型来匹配信息过滤(IF)框架。随后,我们利用这两个模型提出了一个集中式中频,并基于嵌入式乘法器交替方向方法(ADMM)技术将其扩展到分布式场景。为了保持节点之间的一致性,给出了一个优化函数,然后给出了一个基于共识的约束。数值仿真和理论分析验证了该滤波器的收敛性和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Extended Object Tracking Filter Through Embedded ADMM Technique
This work is concerned with the distributed extended object tracking system over a realistic network, where all nodes are required to achieve consensus on both the extent and kinematics. To this end, we first exploit an aligned velocity model to establish a tight relation between the orientation and velocity vector. Then, we use the moment-matching method to give two separate models to match the information filter (IF) framework. Later, we resort to the two models to propose a centralized IF and extend it to the distributed scenario based on the embedded alternating direction method of multipliers (ADMM) technique. To keep an agreement between nodes, an optimization function is given, followed by a consensus-based constraint. Numerical simulation together with theoretical analysis verifies the convergence and consensus of the proposed filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling Global-local Feature Aggregation for Event-based Object Detection on EventKITTI Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM PIPO: Policy Optimization with Permutation-Invariant Constraint for Distributed Multi-Robot Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1