Ke Liu, Madelyn Kosednar, Tomohiro Tachi, G. Paulino
{"title":"集成折纸-弦系统","authors":"Ke Liu, Madelyn Kosednar, Tomohiro Tachi, G. Paulino","doi":"10.1115/detc2019-97486","DOIUrl":null,"url":null,"abstract":"\n Origami-inspired mechanical systems are mostly composed of two-dimensional elements, a feature inherited from paper folding. However, do we have to comply with this restriction on our design space? Would it be more approachable to achieve desired performance by integrating elements of different abstract dimensions? In this paper, we propose an integrated structural system consisting of both two-dimensional and one-dimensional elements. We attach elastic strings onto an origami design to modify its mechanical behavior and create new features. We show that, by introducing elastic strings to the recently proposed Morph pattern, we can obtain bistable units with programmable energy landscape. The behavior of this integrated origami-string system can be described by an elegant formulation, which can be used to explore its rich programmability.","PeriodicalId":211780,"journal":{"name":"Volume 5B: 43rd Mechanisms and Robotics Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Origami-String System\",\"authors\":\"Ke Liu, Madelyn Kosednar, Tomohiro Tachi, G. Paulino\",\"doi\":\"10.1115/detc2019-97486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Origami-inspired mechanical systems are mostly composed of two-dimensional elements, a feature inherited from paper folding. However, do we have to comply with this restriction on our design space? Would it be more approachable to achieve desired performance by integrating elements of different abstract dimensions? In this paper, we propose an integrated structural system consisting of both two-dimensional and one-dimensional elements. We attach elastic strings onto an origami design to modify its mechanical behavior and create new features. We show that, by introducing elastic strings to the recently proposed Morph pattern, we can obtain bistable units with programmable energy landscape. The behavior of this integrated origami-string system can be described by an elegant formulation, which can be used to explore its rich programmability.\",\"PeriodicalId\":211780,\"journal\":{\"name\":\"Volume 5B: 43rd Mechanisms and Robotics Conference\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5B: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Origami-inspired mechanical systems are mostly composed of two-dimensional elements, a feature inherited from paper folding. However, do we have to comply with this restriction on our design space? Would it be more approachable to achieve desired performance by integrating elements of different abstract dimensions? In this paper, we propose an integrated structural system consisting of both two-dimensional and one-dimensional elements. We attach elastic strings onto an origami design to modify its mechanical behavior and create new features. We show that, by introducing elastic strings to the recently proposed Morph pattern, we can obtain bistable units with programmable energy landscape. The behavior of this integrated origami-string system can be described by an elegant formulation, which can be used to explore its rich programmability.