用于卷积神经网络的简化分子输入行输入系统符号数据集的制备

Sandi Baressi Segota, N. Anđelić, I. Lorencin, J. Musulin, D. Štifanić, Z. Car
{"title":"用于卷积神经网络的简化分子输入行输入系统符号数据集的制备","authors":"Sandi Baressi Segota, N. Anđelić, I. Lorencin, J. Musulin, D. Štifanić, Z. Car","doi":"10.1109/BIBE52308.2021.9635320","DOIUrl":null,"url":null,"abstract":"Simplified Molecular Input Line Entry System (SMILES) is a type of chemical notation. The SMILES format allows the representation of chemical structures in a shape easily readable by computer programs. This allows many techniques, such as Artificial Neural Networks (ANNs) to be applied on the SMILES formatted data. One of the highest-performing ANN types is the Convolutional Neural Networks (CNNs), designed to work on images or matrix-shaped data. In this paper, the authors will present the preparation of the SMILES dataset for use by CNNs. The paper will start with a brief description of the SMILES format, followed by the explanation of the dataset transformation into an NPY matrix-based format, with an example of utilization via the application of popular CNN architectures on a transformed dataset. The proposed architecture achieves satisfactory results (AUC=0.92), with the transformation algorithm speed also proving satisfactory (0.08 seconds per data point)","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preparation of Simplified Molecular Input Line Entry System Notation Datasets for use in Convolutional Neural Networks\",\"authors\":\"Sandi Baressi Segota, N. Anđelić, I. Lorencin, J. Musulin, D. Štifanić, Z. Car\",\"doi\":\"10.1109/BIBE52308.2021.9635320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simplified Molecular Input Line Entry System (SMILES) is a type of chemical notation. The SMILES format allows the representation of chemical structures in a shape easily readable by computer programs. This allows many techniques, such as Artificial Neural Networks (ANNs) to be applied on the SMILES formatted data. One of the highest-performing ANN types is the Convolutional Neural Networks (CNNs), designed to work on images or matrix-shaped data. In this paper, the authors will present the preparation of the SMILES dataset for use by CNNs. The paper will start with a brief description of the SMILES format, followed by the explanation of the dataset transformation into an NPY matrix-based format, with an example of utilization via the application of popular CNN architectures on a transformed dataset. The proposed architecture achieves satisfactory results (AUC=0.92), with the transformation algorithm speed also proving satisfactory (0.08 seconds per data point)\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

简化分子输入线输入系统(SMILES)是一种化学符号。SMILES格式允许以计算机程序容易读懂的形状表示化学结构。这允许许多技术,如人工神经网络(ann)应用于SMILES格式化的数据。表现最好的人工神经网络类型之一是卷积神经网络(cnn),设计用于处理图像或矩阵形数据。在本文中,作者将介绍cnn使用的SMILES数据集的准备工作。本文将从对SMILES格式的简要描述开始,然后解释数据集转换为基于NPY矩阵的格式,并通过在转换后的数据集上应用流行的CNN架构来使用示例。该架构取得了令人满意的结果(AUC=0.92),变换算法的速度也令人满意(每数据点0.08秒)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of Simplified Molecular Input Line Entry System Notation Datasets for use in Convolutional Neural Networks
Simplified Molecular Input Line Entry System (SMILES) is a type of chemical notation. The SMILES format allows the representation of chemical structures in a shape easily readable by computer programs. This allows many techniques, such as Artificial Neural Networks (ANNs) to be applied on the SMILES formatted data. One of the highest-performing ANN types is the Convolutional Neural Networks (CNNs), designed to work on images or matrix-shaped data. In this paper, the authors will present the preparation of the SMILES dataset for use by CNNs. The paper will start with a brief description of the SMILES format, followed by the explanation of the dataset transformation into an NPY matrix-based format, with an example of utilization via the application of popular CNN architectures on a transformed dataset. The proposed architecture achieves satisfactory results (AUC=0.92), with the transformation algorithm speed also proving satisfactory (0.08 seconds per data point)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1