利用脑电图信号的二次时频分布检测癫痫发作

Fayza Ghembaza, A. Djebbari
{"title":"利用脑电图信号的二次时频分布检测癫痫发作","authors":"Fayza Ghembaza, A. Djebbari","doi":"10.1109/ICAEE47123.2019.9015167","DOIUrl":null,"url":null,"abstract":"Epilepsy is a chronic disorder caused by recurring seizures which can be detected by analyzing Electroencephalogram (EEG) signals. Several analysis methods have been deployed to recognize the non-stationary multicomponent content in relation with seizures within EEG signals. In this paper, we analyzed CHB-MIT Scalp EEG database signals by high-resolution quadratic time-frequency distributions, namely; the Spectrogram (SP), the Smoothed Pseudo Wigner-Ville Distribution (SPWVD), and the Choi-Williams Distribution (CWD) in a comparison viewpoint. We accomplished this study to evaluate the performance of each method towards detecting seizure within EEG signals. We used the time-frequency extended Renyi Entropy (RE) as a performance metric towards energy distribution complexity Within the time-frequency plane. We calculated this parameter over frequency bandwidths of Delta, Theta, Alpha, Beta, and Gamma brainwaves for the Quadratic Time-Frequency Distributions (QTFDs) of normal and abnormal EEG signals.","PeriodicalId":197612,"journal":{"name":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Epileptic Seizure Detection by Quadratic Time-Frequency Distributions of Electroencephalogram signals\",\"authors\":\"Fayza Ghembaza, A. Djebbari\",\"doi\":\"10.1109/ICAEE47123.2019.9015167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a chronic disorder caused by recurring seizures which can be detected by analyzing Electroencephalogram (EEG) signals. Several analysis methods have been deployed to recognize the non-stationary multicomponent content in relation with seizures within EEG signals. In this paper, we analyzed CHB-MIT Scalp EEG database signals by high-resolution quadratic time-frequency distributions, namely; the Spectrogram (SP), the Smoothed Pseudo Wigner-Ville Distribution (SPWVD), and the Choi-Williams Distribution (CWD) in a comparison viewpoint. We accomplished this study to evaluate the performance of each method towards detecting seizure within EEG signals. We used the time-frequency extended Renyi Entropy (RE) as a performance metric towards energy distribution complexity Within the time-frequency plane. We calculated this parameter over frequency bandwidths of Delta, Theta, Alpha, Beta, and Gamma brainwaves for the Quadratic Time-Frequency Distributions (QTFDs) of normal and abnormal EEG signals.\",\"PeriodicalId\":197612,\"journal\":{\"name\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE47123.2019.9015167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE47123.2019.9015167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

癫痫是一种由反复发作引起的慢性疾病,可以通过分析脑电图(EEG)信号来检测。几种分析方法已经部署,以识别非平稳的多成分内容与癫痫发作的脑电图信号。本文采用高分辨率二次时频分布对CHB-MIT头皮EEG数据库信号进行分析,即;比较了谱图(SP)、平滑伪Wigner-Ville分布(SPWVD)和Choi-Williams分布(CWD)。我们完成了这项研究,以评估每种方法在脑电图信号中检测癫痫发作的性能。我们使用时频扩展Renyi熵(RE)作为表征时频平面内能量分布复杂度的性能指标。我们对正常和异常脑电图信号的二次时频分布(QTFDs)的Delta、Theta、Alpha、Beta和Gamma脑电波的频率带宽进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epileptic Seizure Detection by Quadratic Time-Frequency Distributions of Electroencephalogram signals
Epilepsy is a chronic disorder caused by recurring seizures which can be detected by analyzing Electroencephalogram (EEG) signals. Several analysis methods have been deployed to recognize the non-stationary multicomponent content in relation with seizures within EEG signals. In this paper, we analyzed CHB-MIT Scalp EEG database signals by high-resolution quadratic time-frequency distributions, namely; the Spectrogram (SP), the Smoothed Pseudo Wigner-Ville Distribution (SPWVD), and the Choi-Williams Distribution (CWD) in a comparison viewpoint. We accomplished this study to evaluate the performance of each method towards detecting seizure within EEG signals. We used the time-frequency extended Renyi Entropy (RE) as a performance metric towards energy distribution complexity Within the time-frequency plane. We calculated this parameter over frequency bandwidths of Delta, Theta, Alpha, Beta, and Gamma brainwaves for the Quadratic Time-Frequency Distributions (QTFDs) of normal and abnormal EEG signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Patch Antennas based on Metamaterials CSRRs UAV Attitude Estimation using Visual and Inertial Data Fusion based on Observer in SO(3) Experimental Study of a Glazed Bi-Fluid (Water/Air) Solar Thermal Collector for Building Integration Daily Direct Normal Irradiance Forecasting by Support Vector Regression Case Study: in Ghardaia-Algeria Comparative Study of Chaos-Based Robust Digital Image Watermarking Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1