基于改进遗传算法的链路负载均衡研究

Li Zhao, Yu-min Dong, Chen-yang Huang
{"title":"基于改进遗传算法的链路负载均衡研究","authors":"Li Zhao, Yu-min Dong, Chen-yang Huang","doi":"10.1109/ISCID.2013.183","DOIUrl":null,"url":null,"abstract":"Load balancing technology can solve the network congestion problems of modern network which is caused by uneven distribution of traffic. As the network link load balancing is an NP-complete problem, it is difficult to use traditional method to deal with, introducing the idea of genetic algorithm. Using genetic algorithm, the characteristics of efficient and parallel can help to find the global optimal solution quickly. Article on the basis of traditional genetic algorithm, this paper puts forward a network link load balancing strategy based on improved genetic algorithm. Experiments show that it can find the answer to the problem better.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Study of Link Load Balancing Based on Improved Genetic Algorithm\",\"authors\":\"Li Zhao, Yu-min Dong, Chen-yang Huang\",\"doi\":\"10.1109/ISCID.2013.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load balancing technology can solve the network congestion problems of modern network which is caused by uneven distribution of traffic. As the network link load balancing is an NP-complete problem, it is difficult to use traditional method to deal with, introducing the idea of genetic algorithm. Using genetic algorithm, the characteristics of efficient and parallel can help to find the global optimal solution quickly. Article on the basis of traditional genetic algorithm, this paper puts forward a network link load balancing strategy based on improved genetic algorithm. Experiments show that it can find the answer to the problem better.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

负载均衡技术可以解决现代网络中由于流量分布不均而造成的网络拥塞问题。由于网络链路负载均衡是一个np完全问题,很难用传统的方法来处理,引入了遗传算法的思想。遗传算法具有高效并行的特点,可以快速找到全局最优解。文章在传统遗传算法的基础上,提出了一种基于改进遗传算法的网络链路负载均衡策略。实验表明,该方法能较好地找到问题的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study of Link Load Balancing Based on Improved Genetic Algorithm
Load balancing technology can solve the network congestion problems of modern network which is caused by uneven distribution of traffic. As the network link load balancing is an NP-complete problem, it is difficult to use traditional method to deal with, introducing the idea of genetic algorithm. Using genetic algorithm, the characteristics of efficient and parallel can help to find the global optimal solution quickly. Article on the basis of traditional genetic algorithm, this paper puts forward a network link load balancing strategy based on improved genetic algorithm. Experiments show that it can find the answer to the problem better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1