增材制造零件滤波方法研究进展

Jennifer Bracken, Christopher McComb, T. Simpson, K. Jablokow
{"title":"增材制造零件滤波方法研究进展","authors":"Jennifer Bracken, Christopher McComb, T. Simpson, K. Jablokow","doi":"10.1115/detc2020-22448","DOIUrl":null,"url":null,"abstract":"\n As additive manufacturing (AM) increases in popularity, many companies seek to identify which parts can be produced via AM. This has led to new areas of research known as “part filtering”, “part selection”, or “part identification” for AM. Numerous methods have been proposed to quantify the suitability of a design to be made with AM, and each has its own benefits and drawbacks. This paper reviews popular methods of part filtering and elaborates on the advantages and disadvantages of the various approaches. The approaches for part filtering, and the example methods, are categorized and sorted along a continuum of opportunistic and restrictive methods in order to clarify use cases for various part filtering techniques. The approaches are also examined through the lens of specificity of process, as some are designed to be process agnostic, while others are customized for a specific AM technology or even a specific AM system. Finally, current gaps that exist in the part filtering research literature are discussed to help identify necessary and promising directions for future investigation.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Review of Part Filtering Methods for Additive Manufacturing\",\"authors\":\"Jennifer Bracken, Christopher McComb, T. Simpson, K. Jablokow\",\"doi\":\"10.1115/detc2020-22448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As additive manufacturing (AM) increases in popularity, many companies seek to identify which parts can be produced via AM. This has led to new areas of research known as “part filtering”, “part selection”, or “part identification” for AM. Numerous methods have been proposed to quantify the suitability of a design to be made with AM, and each has its own benefits and drawbacks. This paper reviews popular methods of part filtering and elaborates on the advantages and disadvantages of the various approaches. The approaches for part filtering, and the example methods, are categorized and sorted along a continuum of opportunistic and restrictive methods in order to clarify use cases for various part filtering techniques. The approaches are also examined through the lens of specificity of process, as some are designed to be process agnostic, while others are customized for a specific AM technology or even a specific AM system. Finally, current gaps that exist in the part filtering research literature are discussed to help identify necessary and promising directions for future investigation.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着增材制造(AM)的普及,许多公司试图确定哪些部件可以通过增材制造生产。这导致了新的研究领域被称为“零件过滤”,“零件选择”,或“零件识别”的增材制造。已经提出了许多方法来量化用增材制造的设计的适用性,每种方法都有自己的优点和缺点。本文综述了常用的零件滤波方法,并详细阐述了各种方法的优缺点。零件过滤的方法和示例方法沿着机会性和限制性方法的连续体进行分类和排序,以便澄清各种零件过滤技术的用例。这些方法也通过工艺的特异性进行了检查,因为有些方法被设计为与工艺无关,而另一些方法则是为特定的增材制造技术甚至特定的增材制造系统定制的。最后,讨论了目前部分滤波研究文献中存在的差距,以帮助确定未来研究的必要和有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Part Filtering Methods for Additive Manufacturing
As additive manufacturing (AM) increases in popularity, many companies seek to identify which parts can be produced via AM. This has led to new areas of research known as “part filtering”, “part selection”, or “part identification” for AM. Numerous methods have been proposed to quantify the suitability of a design to be made with AM, and each has its own benefits and drawbacks. This paper reviews popular methods of part filtering and elaborates on the advantages and disadvantages of the various approaches. The approaches for part filtering, and the example methods, are categorized and sorted along a continuum of opportunistic and restrictive methods in order to clarify use cases for various part filtering techniques. The approaches are also examined through the lens of specificity of process, as some are designed to be process agnostic, while others are customized for a specific AM technology or even a specific AM system. Finally, current gaps that exist in the part filtering research literature are discussed to help identify necessary and promising directions for future investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extrapolation With Gaussian Random Processes and Evolutionary Programming Design and Optimization of Functionally Graded Superelastic NiTi Stents Topic Modeling and Sentiment Analysis of Social Media Data to Drive Experiential Redesign Risk-Averse Optimization for Resilience Enhancement Under Uncertainty Multi-Objective Design Exploration of a Canine Ventriculoperitoneal Shunt for Hydrocephalus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1