基于机器学习算法的功能性近红外光谱(fNIRS)信号抑郁症分类

Nahyun Lee, J. Zhang, Yongho Lee, Taekun Kim
{"title":"基于机器学习算法的功能性近红外光谱(fNIRS)信号抑郁症分类","authors":"Nahyun Lee, J. Zhang, Yongho Lee, Taekun Kim","doi":"10.54941/ahfe1004154","DOIUrl":null,"url":null,"abstract":"Depression is a significant mental health issue affecting individuals\n worldwide. In this study, we aimed to classify healthy, depressed, and\n suicidal individuals using functional nearinfrared spectroscopy (fNIRS)\n signals combined with machine learning algorithms. The dataset consisted of\n fNIRS measurements collected from participants in different mental states.\n Our experiment indicates that the implementation of the histogram based\n gradient boosting algorithm (HGBM) achieved the highest accuracy rate of\n 78.76% and the highest precision rate of 92% for depressed category. The\n HGBM outperformed other algorithms such as k-NN and CatBoosting. The study\n highlights the potential of fNIRS and machine learning in the detection and\n classification of depression.","PeriodicalId":231376,"journal":{"name":"Human Systems Engineering and Design (IHSED 2023): Future Trends\n and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Depression Based on Functional Near-Infrared\\n Spectroscopy (fNIRS) Signals Using Machine Learning Algorithms\",\"authors\":\"Nahyun Lee, J. Zhang, Yongho Lee, Taekun Kim\",\"doi\":\"10.54941/ahfe1004154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depression is a significant mental health issue affecting individuals\\n worldwide. In this study, we aimed to classify healthy, depressed, and\\n suicidal individuals using functional nearinfrared spectroscopy (fNIRS)\\n signals combined with machine learning algorithms. The dataset consisted of\\n fNIRS measurements collected from participants in different mental states.\\n Our experiment indicates that the implementation of the histogram based\\n gradient boosting algorithm (HGBM) achieved the highest accuracy rate of\\n 78.76% and the highest precision rate of 92% for depressed category. The\\n HGBM outperformed other algorithms such as k-NN and CatBoosting. The study\\n highlights the potential of fNIRS and machine learning in the detection and\\n classification of depression.\",\"PeriodicalId\":231376,\"journal\":{\"name\":\"Human Systems Engineering and Design (IHSED 2023): Future Trends\\n and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Systems Engineering and Design (IHSED 2023): Future Trends\\n and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1004154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Systems Engineering and Design (IHSED 2023): Future Trends\n and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1004154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抑郁症是影响全世界个人的重要心理健康问题。在这项研究中,我们旨在使用功能近红外光谱(fNIRS)信号结合机器学习算法对健康、抑郁和自杀个体进行分类。数据集包括从不同精神状态的参与者收集的近红外光谱测量数据。实验表明,基于直方图的梯度增强算法(HGBM)对抑郁类别的准确率最高,达到78.76%,准确率最高,达到92%。HGBM优于其他算法,如k-NN和CatBoosting。该研究强调了fNIRS和机器学习在抑郁症检测和分类方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Depression Based on Functional Near-Infrared Spectroscopy (fNIRS) Signals Using Machine Learning Algorithms
Depression is a significant mental health issue affecting individuals worldwide. In this study, we aimed to classify healthy, depressed, and suicidal individuals using functional nearinfrared spectroscopy (fNIRS) signals combined with machine learning algorithms. The dataset consisted of fNIRS measurements collected from participants in different mental states. Our experiment indicates that the implementation of the histogram based gradient boosting algorithm (HGBM) achieved the highest accuracy rate of 78.76% and the highest precision rate of 92% for depressed category. The HGBM outperformed other algorithms such as k-NN and CatBoosting. The study highlights the potential of fNIRS and machine learning in the detection and classification of depression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
What To Do When The Requirements Are Unknown? - Development of a Simulator for Excretory Care The effect of operation steps on the efficiency of human-computer interaction DJaytopia: a hybrid intelligent DJ co-remixing system Human-Centered Design for a Virtual Human led mHealth Intervention for Suicide Prevention OSH risks of health and social care workers working in clients' homes in Finland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1