可解释深度学习用于药物不良事件预测的研究

J. Rebane, Isak Karlsson, P. Papapetrou
{"title":"可解释深度学习用于药物不良事件预测的研究","authors":"J. Rebane, Isak Karlsson, P. Papapetrou","doi":"10.1109/CBMS.2019.00075","DOIUrl":null,"url":null,"abstract":"A variety of deep learning architectures have been developed for the goal of predictive modelling in regards to detecting health diagnoses in medical records. Several models have placed strong emphases on temporal attention mechanisms and decay factors as a means to include highly temporally relevant information regarding the recency of medical event occurrence while facilitating medical code-level interpretability. In this study we utilise such models with a novel Electronic Patient Record (EPR) data set consisting of both diagnoses and medication data for the purpose of Adverse Drug Event (ADE) prediction. As such, a main contribution of this work is an empirical evaluation of two state-of-the-art deep learning architectures in terms of objective performance metrics for ADE prediction. We also assess the importance of attention mechanisms in regards to their usefulness for medical code-level interpretability, which may facilitate novel insights pertaining to the nature of ADE occurrence within the health care domain.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Investigation of Interpretable Deep Learning for Adverse Drug Event Prediction\",\"authors\":\"J. Rebane, Isak Karlsson, P. Papapetrou\",\"doi\":\"10.1109/CBMS.2019.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of deep learning architectures have been developed for the goal of predictive modelling in regards to detecting health diagnoses in medical records. Several models have placed strong emphases on temporal attention mechanisms and decay factors as a means to include highly temporally relevant information regarding the recency of medical event occurrence while facilitating medical code-level interpretability. In this study we utilise such models with a novel Electronic Patient Record (EPR) data set consisting of both diagnoses and medication data for the purpose of Adverse Drug Event (ADE) prediction. As such, a main contribution of this work is an empirical evaluation of two state-of-the-art deep learning architectures in terms of objective performance metrics for ADE prediction. We also assess the importance of attention mechanisms in regards to their usefulness for medical code-level interpretability, which may facilitate novel insights pertaining to the nature of ADE occurrence within the health care domain.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了在医疗记录中检测健康诊断的预测建模,已经开发了各种深度学习架构。有几个模型非常强调时间注意机制和衰减因素,以此作为一种手段,在促进医学代码级别的可解释性的同时,纳入与医疗事件发生的近代性有关的高度时间相关的信息。在这项研究中,我们利用这种模型与一种新的电子病历(EPR)数据集,包括诊断和药物数据,用于药物不良事件(ADE)预测。因此,这项工作的主要贡献是根据ADE预测的客观性能指标对两种最先进的深度学习架构进行实证评估。我们还评估了注意机制在医学代码级别可解释性方面的重要性,这可能有助于对医疗保健领域内ADE发生性质的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Investigation of Interpretable Deep Learning for Adverse Drug Event Prediction
A variety of deep learning architectures have been developed for the goal of predictive modelling in regards to detecting health diagnoses in medical records. Several models have placed strong emphases on temporal attention mechanisms and decay factors as a means to include highly temporally relevant information regarding the recency of medical event occurrence while facilitating medical code-level interpretability. In this study we utilise such models with a novel Electronic Patient Record (EPR) data set consisting of both diagnoses and medication data for the purpose of Adverse Drug Event (ADE) prediction. As such, a main contribution of this work is an empirical evaluation of two state-of-the-art deep learning architectures in terms of objective performance metrics for ADE prediction. We also assess the importance of attention mechanisms in regards to their usefulness for medical code-level interpretability, which may facilitate novel insights pertaining to the nature of ADE occurrence within the health care domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1