Hilbert-Huang变换:癫痫和心律失常的初步研究

A. Eftekhar, Fahim Vohra, C. Toumazou, E. Drakakis, K. Parker
{"title":"Hilbert-Huang变换:癫痫和心律失常的初步研究","authors":"A. Eftekhar, Fahim Vohra, C. Toumazou, E. Drakakis, K. Parker","doi":"10.1109/BIOCAS.2008.4696952","DOIUrl":null,"url":null,"abstract":"This work describes a preliminary study based on a time-frequency analysis tool, the Hilbert-Huang transform, which can be applied to the analysis of signals deemed, to some degree, nonstationary and nonlinear. Through implementation in a software programming environment and testing on a sample of patient data sets, we demonstrate the potential of this technique. Its ability to naturally decompose electrical signals of both the heart (ECG) and brain (invasive EEG) into clear frequency and amplitude variations are shown. This ability is reflected in provisional results in the detection of epileptic seizures and cardiac arrhythmias.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hilbert-Huang transform: Preliminary studies in epilepsy and cardiac arrhythmias\",\"authors\":\"A. Eftekhar, Fahim Vohra, C. Toumazou, E. Drakakis, K. Parker\",\"doi\":\"10.1109/BIOCAS.2008.4696952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a preliminary study based on a time-frequency analysis tool, the Hilbert-Huang transform, which can be applied to the analysis of signals deemed, to some degree, nonstationary and nonlinear. Through implementation in a software programming environment and testing on a sample of patient data sets, we demonstrate the potential of this technique. Its ability to naturally decompose electrical signals of both the heart (ECG) and brain (invasive EEG) into clear frequency and amplitude variations are shown. This ability is reflected in provisional results in the detection of epileptic seizures and cardiac arrhythmias.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本工作描述了基于时频分析工具Hilbert-Huang变换的初步研究,该工具可用于分析在某种程度上被认为是非平稳和非线性的信号。通过在软件编程环境中的实现和对患者数据集样本的测试,我们展示了这种技术的潜力。它能够自然地将心脏(ECG)和大脑(侵入性脑电图)的电信号分解为清晰的频率和幅度变化。这种能力反映在检测癫痫发作和心律失常的初步结果中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hilbert-Huang transform: Preliminary studies in epilepsy and cardiac arrhythmias
This work describes a preliminary study based on a time-frequency analysis tool, the Hilbert-Huang transform, which can be applied to the analysis of signals deemed, to some degree, nonstationary and nonlinear. Through implementation in a software programming environment and testing on a sample of patient data sets, we demonstrate the potential of this technique. Its ability to naturally decompose electrical signals of both the heart (ECG) and brain (invasive EEG) into clear frequency and amplitude variations are shown. This ability is reflected in provisional results in the detection of epileptic seizures and cardiac arrhythmias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless neural interface for chronic recording Development of novel SAW devices in CMOS technology for biosensor applications An efficient wireless power link for high voltage retinal implant FPGA implementation of 4-channel ICA for on-line EEG signal separation Pressure detection and wireless interface for patient bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1