基于脑电图的驾驶员情绪分类新方法

T. A. Gamage, E. Sandamali, Pradeep Kalansooriya
{"title":"基于脑电图的驾驶员情绪分类新方法","authors":"T. A. Gamage, E. Sandamali, Pradeep Kalansooriya","doi":"10.1109/SCSE59836.2023.10215028","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) based emotion recognition approaches have proven to be successful with the latest technologies, and therefore, driver emotion recognition is also being widely discussed for enhancing road safety. This paper reveals a unique approach to driver emotion recognition for the calm, fear, sad, and anger emotional states where calm is the desired state of mind while driving. Emotiv EPOC X 14 channel EEG headset is utilised for the EEG collection, and ten subjects are involved in the experiment. EEG preprocessing of the collected EEG data is done using the EEGLAB toolbox in Matlab. EEG feature extraction is performed using Matlab, and feature selection and classification model training is done using the Classification Learner app in Matlab. ANOVA and ReliefF are employed as the feature selection algorithms, and Support Vector Machine (SVM) and Naïve Bayes classifiers are utilised for the emotion classification. The outcomes reveal that the highest mean accuracy of 95% is achieved from the Coarse Gaussian SVM classifier, while the lowest mean accuracy of 85% is obtained from the Fine Gaussian SVM classifier detecting the calm, fear, sad, and anger emotional states. In addition, all the other trained classifier models have an accuracy between 85% and 95%. Therefore, the findings suggest that the proposed EEG-based implementation approach of an emotion classification model for drivers is highly successful and can be employed in future research in the paradigm of driver emotion recognition as well. Besides, this research presents a critical literature review concerning critical aspects of EEG-based emotion recognition research.","PeriodicalId":429228,"journal":{"name":"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DrivEmo: A Novel Approach for EEG-Based Emotion Classification for Drivers\",\"authors\":\"T. A. Gamage, E. Sandamali, Pradeep Kalansooriya\",\"doi\":\"10.1109/SCSE59836.2023.10215028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram (EEG) based emotion recognition approaches have proven to be successful with the latest technologies, and therefore, driver emotion recognition is also being widely discussed for enhancing road safety. This paper reveals a unique approach to driver emotion recognition for the calm, fear, sad, and anger emotional states where calm is the desired state of mind while driving. Emotiv EPOC X 14 channel EEG headset is utilised for the EEG collection, and ten subjects are involved in the experiment. EEG preprocessing of the collected EEG data is done using the EEGLAB toolbox in Matlab. EEG feature extraction is performed using Matlab, and feature selection and classification model training is done using the Classification Learner app in Matlab. ANOVA and ReliefF are employed as the feature selection algorithms, and Support Vector Machine (SVM) and Naïve Bayes classifiers are utilised for the emotion classification. The outcomes reveal that the highest mean accuracy of 95% is achieved from the Coarse Gaussian SVM classifier, while the lowest mean accuracy of 85% is obtained from the Fine Gaussian SVM classifier detecting the calm, fear, sad, and anger emotional states. In addition, all the other trained classifier models have an accuracy between 85% and 95%. Therefore, the findings suggest that the proposed EEG-based implementation approach of an emotion classification model for drivers is highly successful and can be employed in future research in the paradigm of driver emotion recognition as well. Besides, this research presents a critical literature review concerning critical aspects of EEG-based emotion recognition research.\",\"PeriodicalId\":429228,\"journal\":{\"name\":\"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCSE59836.2023.10215028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCSE59836.2023.10215028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于脑电图(EEG)的情绪识别方法已被最新技术证明是成功的,因此驾驶员情绪识别也被广泛讨论以提高道路安全。本文揭示了一种独特的方法来识别司机的情绪平静,恐惧,悲伤和愤怒的情绪状态,而冷静是驾驶时的理想心态。EEG采集采用Emotiv EPOC X 14通道脑电耳机,实验共涉及10名受试者。利用Matlab中的EEGLAB工具箱对采集到的脑电信号进行预处理。利用Matlab进行脑电特征提取,利用Matlab中的classification Learner app进行特征选择和分类模型训练。使用ANOVA和ReliefF作为特征选择算法,使用支持向量机(SVM)和Naïve贝叶斯分类器进行情感分类。结果表明,粗高斯SVM分类器检测平静、恐惧、悲伤和愤怒情绪状态的平均准确率最高,达到95%,而细高斯SVM分类器检测平静、恐惧、悲伤和愤怒情绪状态的平均准确率最低,为85%。此外,所有其他训练的分类器模型的准确率在85%到95%之间。因此,研究结果表明,基于脑电图的驾驶员情绪分类模型的实现方法是非常成功的,也可以用于未来驾驶员情绪识别范式的研究。此外,本研究对基于脑电图的情绪识别研究的关键方面进行了批判性的文献综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DrivEmo: A Novel Approach for EEG-Based Emotion Classification for Drivers
Electroencephalogram (EEG) based emotion recognition approaches have proven to be successful with the latest technologies, and therefore, driver emotion recognition is also being widely discussed for enhancing road safety. This paper reveals a unique approach to driver emotion recognition for the calm, fear, sad, and anger emotional states where calm is the desired state of mind while driving. Emotiv EPOC X 14 channel EEG headset is utilised for the EEG collection, and ten subjects are involved in the experiment. EEG preprocessing of the collected EEG data is done using the EEGLAB toolbox in Matlab. EEG feature extraction is performed using Matlab, and feature selection and classification model training is done using the Classification Learner app in Matlab. ANOVA and ReliefF are employed as the feature selection algorithms, and Support Vector Machine (SVM) and Naïve Bayes classifiers are utilised for the emotion classification. The outcomes reveal that the highest mean accuracy of 95% is achieved from the Coarse Gaussian SVM classifier, while the lowest mean accuracy of 85% is obtained from the Fine Gaussian SVM classifier detecting the calm, fear, sad, and anger emotional states. In addition, all the other trained classifier models have an accuracy between 85% and 95%. Therefore, the findings suggest that the proposed EEG-based implementation approach of an emotion classification model for drivers is highly successful and can be employed in future research in the paradigm of driver emotion recognition as well. Besides, this research presents a critical literature review concerning critical aspects of EEG-based emotion recognition research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Music Similarity through Siamese CNNs using Triplet Loss on Music Samples Impacts of Integrated Railway-Based Containerized Cargo Transport Network to Connect the Port of Colombo and Free Trade Zones in Sri Lanka Investigating Factors Influencing Behavioral Intention Toward Green Computing Practices Among Undergraduates In Sri Lankan Universities Preserving India’s Rich Dance Heritage: A Classification of Indian Dance Forms and Innovative Digital Management Solutions for Cultural Heritage Conservation An Automatic Density Cluster Generation Method to Identify the Amount of Tool Flank Wear via Tool Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1